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Abstract. Design templates that involve discovery, 

analysis, and integration of information resources 

commonly occur in many scientific research projects. 

In this paper we present examples of design 

templates from the biomedical translational research 

domain and discuss the requirements imposed on 

Grid middleware infrastructures by them. Using 

caGrid, which is a Grid middleware system based on 

the model driven architecture (MDA) and the service 

oriented architecture (SOA) paradigms, as a starting 

point, we discuss architecture directions for MDA 

and SOA based systems like caGrid to support 

common design templates.   

1. Introduction 

Scientific research in any field encompasses a wide 

range of problems and application scenarios. While a 

variety of approaches are developed by researchers to 

attack specific sets of problems, common aspects of 

these approaches can be grouped into domain-

specific general patterns of research. We refer to such 

patterns as design templates. A design template is a 

representation of the common understanding of a 

domain problem by researchers. It describes the 

common components of the problem and generic 

approaches to attacking the problem. The importance 

of design templates is that they capture design 

requirements and constraints that arise in broad 

families of applications  

We focus on translational biomedical research design 

templates. The term "translational biomedical 

research" is associated with research directed at 

developing ways of treating or preventing diseases 

through the application of basic science knowledge or 

techniques.  Translational research projects are 

heterogeneous in nature. They target a wide variety 

of diseases, test many different kinds of biomedical 

hypotheses, and employ a large assortment of 

experimental methodologies. Specific translational 

research problems are often used as motivating use 

cases for computer science research. We will present 

an initial set of "design templates" that capture the 

salient aspects of different types of translational 

research studies.   In this paper we relate translational 

research design templates to middleware 

requirements. This work is motivated both by 

Christopher Alexander's seminal writings on design 

languages used to capture and classify salient aspects 

of  architectural design [1] as well as the later work 

on software design patterns [2] where somewhat 

analogous principles were applied to software design. 

Note that different aspects of a given real world 

translational research study can often be described by 

more than one design template.  Figure 1 shows 

several examples of design templates in translational 

research and their primary characteristics.  

We describe middleware requirements arising from 

the first three design templates listed in Figure 1; 1) 

coordinated system level attack on focused problem, 

2) prospective research studies and 3) multiscale 

translational research: investigations that encompass 

genomics, epigenetics, (micro)-anatomic structure 

and function.  

 

 

 

 

 

 

 



Design Template Characteristics 

Coordinated System Level Attack on a Focused 

Problem (Coordinated Template)  

A closely coordinated set of experiments whose results 

are integrated in order to answer a set of biomedical 

questions. Typically involves analysis and integration of 

information from multiple complementary experiments 

that yield different but closely interrelated data types 

(e.g., gene expression, image, SNP, clinical data).  

Prospective Clinical Research Study (Prospective 

Template) 

Involves studies in which a group of patients are 

systematically tracked over a period of time. Prospective 

studies sometimes are designed to elucidate risk factors 

for development or progression of disease and are 

sometimes designed to assess effects of various 

treatments.  In many cases, patients are accrued from 

many institutions and sometimes from many countries.   

Multiscale Translational Research: Investigations 

that encompass genomics, epigenetics, (micro)-

anatomic structure and function (Multiscale 

Template) 

Studies that attempt to measure, quantify and (in many 

cases) simulate biomedical phenomena in a way that 

takes into account multiple spatial and (in some cases) 

temporal scales. Data types include information from 

light, multi-photon, electron microscopy imaging, CT, 

micro-CT, MR, molecular imaging, gene expression, 

mass spec, and data from simulations.  Simulations and 

analyses of multiscale data can be highly compute 

intensive. 

Secondary Data Analysis 
Studies that carry out new analysis of already curated 

data to gain new insights. Data is analyzed using new 

analysis methods, integrated in new ways, or correlated in 

new ways.  Analyses may involve multiple independently 

curated data services. 

Adaptive Image Guided Intervention 
Studies that involve interactive use of image data for 

therapy planning, surgery planning, and performing 

surgery. Data may come from different types of image 

modalities.  Image data is analyzed iteratively and 

interactively to create a treatment plan, adjust drug 

dosage, etc. Time dependent images and simulation Are 

used in soft real time to modify plans. This is an example 

of a Dynamic Data Driven Application System. 

Figure 1. Examples of design templates for translational research. 

Discovery, analysis, and integration of heterogeneous 

information resources is a theme that commonly 

occurs in many translational research design 

templates. In recent years, the service oriented 

architecture (SOA) and the model driven architecture 

(MDA) have gained popularity as frameworks on 

which to develop interoperable systems. The service-

oriented architecture (SOA) encapsulates standards 

(e.g., Web Services[3], Web Services Resource 

Framework[4]) on common interface syntax, 

communication and service invocation protocols, and 

the core capabilities of services. The model driven 



architecture promotes a software design approach 

based on platform independent models and metadata 

to describe these models. Solutions integrating and 

extending these architecture patterns offer a viable 

approach to address the problem of programmatic, 

syntactic, semantic interoperability, and integration, 

and as a consequence the implementation of design 

templates. Using caGrid[5, 6], which combines and 

extends MDA and SOA for scientific research, as a 

starting point, we discuss architecture features and 

tools for caGrid like systems to address the 

requirements of design templates in scientific 

research.  

2. Examples of Design Templates  

In this section we will describe the following three 

design templates: 1) Coordinated Systems Level 

Attack on Focused Problem (Coordinated Template), 

2) Prospective clinical research study (Prospective 

Template) and 3) Multiscale Translational Research: 

Investigations that encompass genomics, epigenetics, 

(micro)-anatomic structure and function (Multiscale 

Template). The other three design templates are 

outlined in Figure 1; we will expand on those 

elsewhere. In conjunction with the design templates, 

we also present requirements that arise in these 

templates.  

The Coordinated Template involves a closely 

coordinated set of experiments whose results are 

integrated in order to answer a set of biomedical 

questions. A good example of an application 

described by this design template is the effort on the 

part of the Cardiovascular Research Grid (CVRG) 

and the Reynolds project to integrate genomic, 

proteomic, ECG and image data to better predict the 

likelihood of potentially lethal arrhythmias 

(http://www.cvrgrid.org). This problem is of great 

practical significance because at risk patients can 

receive implantable cardioverter defibrillators 

(ICDs). Another example of this design template is 

the effort on the part of the NCI ICBP funded Ohio 

State Center for Epigenetics (http://icbp.med.ohio-

state.edu) to understand the impact of epigenetic 

changes on particular genomic pathways through 

coordinated study of gene epigenetics, gene 

sequence, gene expression, and proteomics. A deep 

understanding of this integrated system can be used 

to develop new drugs and to evaluate which patients 

are best suited for a given therapy. 

The Coordinated Template provides motivating 

requirements for the development of methods for 

supporting deep semantic integration of many 

complementary types of information.  Gene 

sequence, genetic expression, epigenetics, and 

protein production need to be interpreted, 

represented, and modeled as highly interdependent 

phenomena in this design template. In the CVRG 

example, researchers access different data systems to 

create candidate patient profiles using clinical, 

genomic, proteomic, ECG data, and information 

derived from images.  These candidate patient 

profiles are being compared and analyzed by CVRG 

researchers to predict likelihood of potentially lethal 

arrhythmias.  

The Prospective Template involves studies in which a 

group of patients are systematically followed over a 

period of time. Prospective studies sometimes are 

designed to elucidate risk factors for development or 

progression of disease and are sometimes designed to 

assess effects of various treatments.  In many cases, 

patients are accrued from many institutions and 

sometimes from many countries.   

The Prospective Template provides motivating 

requirements for security, semantic interoperability, 

and interfacing with existing institutional systems.  It 

is very expensive and (with a few exceptions) 

impractical to develop a purpose built information 

system for a particular prospective study.  From the 

point of view of economics, logistics, and quality 

control, it makes much more sense to share a core 

information architecture for many prospective trials. 

Prospective template information architectures need 

to interoperate with existing institutional systems in 

order to better support prospective trial workflow, 

and to avoid double entering of data and manual 

copying of files arising from Radiology and 

Pathology. Prospective trials have a huge semantic 

scope; there is a vast span of possible diseases, 

treatments, symptoms, Radiology and Pathology 

findings, genetic and molecular studies. There is a 

need to translate between ontologies, controlled 

vocabularies, and data types.  Subsystems that need 

to be interacted with may be commercial or open 



source systems that adhere to varying degrees to a 

broad collection of distinct but overlapping standards 

including HL7 (www.hl7.org), DICOM 

(http://medical.nema.org/), IHE 

(http://www.ihe.net/),  LOINC 

(http://www.nlm.nih.gov/research/umls/loinc_main.h

tml), caBIG™ Silver and Gold [7].   

There are a variety of efforts to address the issue of 

integrating information across trials. These include 

the Clinical Data Interchange Standards Consortium 

(CDISC) and the HL7 based Regulated Clinical 

Research Information Management (RCRIM) 

Technical Committee (TC).  The Biomedical 

Research Integrated Domain Group (BRIDG) project 

described in [8] aims to systematically harmonize 

existing clinical research standards and to 

systematically develop specifications for new 

standards to support clinical research.  

The Multiscale Template models studies that attempt 

to measure, quantify, and in some cases simulate, 

biomedical phenomena in a way that takes into 

account multiple spatial and/or temporal scales. The 

study of tumor microenvironment is one excellent 

example. The development of cancer occurs in both 

space and time. Cancers are composed of multiple 

different interacting cell types; the genetics, 

epigenetics, regulation, protein expression, signaling, 

growth and blood vessel recruitment take place in 

time and space.  Very large scale datasets are 

required to describe tumor microenvironment 

experimental results. Tumor microenvironment 

datasets are semantically complex as they encode 

ways in which morphology interrelates over time 

with genetics, genomics, epigenetics, and protein 

expression. 

Image acquisition, processing, classification and 

analysis play a central role in support of the 

Multiscale Template. A single high resolution image 

from digitizing microscopes can reach tens of 

gigabytes in size. Hundreds of images can be 

obtained from one tissue specimen, thus generating 

both 2D and 3D morphological information. In 

addition, image sets can be captured at multiple time 

points to form a temporal view of morphological 

changes. Images obtained from queries into image 

databases are processed through a series of simple 

and complex operations expressed as a data analysis 

workflow. The workflow may include a network of 

operations such as cropping, correction of various 

data acquisition artifacts, filtering operations, 

segmentation, registration, feature detection, feature 

classification, as well as interactive inspection and 

annotation of images. The results of the analysis 

workflow are annotations on images and image 

regions, which represent cells (a high resolution 

image may contain thousands of cells), cell types, 

and the spatial characteristics of the cells. These 

annotations may be associated with concepts and 

properties defined in different ontologies. The 

researcher may compose queries to select a subset of 

images with particular features (e.g., based on cell 

types and distribution of cells in the image) and 

associate these image features with genomic data 

obtained for different types of cells. Genetic and 

cellular information can further be integrated with 

biological pathway information to study how genetic, 

epigenetic, and cellular changes may impact major 

pathways. 

Simulation also plays a crucial role in the Multiscale 

Template. As knowledge of basic biomedical 

phenomena increases, the ability to carry out 

meaningful detailed simulations dramatically 

increases. Some researchers are now carrying out 

tumor microenvironment simulations[9] and we 

expect the prevalence of this to dramatically increase 

with the improved quality of detailed multiscale data.  

3. Middleware Architecture Features 

In this section we will look at architecture features 

for middleware systems as motivated by the 

translational research design templates in a Grid 

environment. We focus on five core areas: 

management of data structures and semantic 

information, support for data and analytical services, 

support for federated query and orchestration of 

services, interoperability with other infrastructure, 

and security infrastructure. We will use caGrid [5, 6, 

10] along with references to several other systems to 

show implementation choices in these areas.  The key 

architecture features of caGrid are based on a wide 

range of design templates from translational research 

and other biomedical research areas targeted by the 

cancer Biomedical Informatics Grid (caBIG™) 



program (https://cabig.nci.nih.gov). A key feature of 

caGrid is that it draws from the basic principles and 

marriage of the model driven architecture (MDA) and 

the service oriented architecture (SOA) and extends 

them with the notion of strongly typed services, 

common data elements, and controlled vocabularies 

to address the design templates.  As such, caGrid is a 

good example of how middleware systems 

combining MDA and SOA can address the 

requirements of design templates and is a good 

starting point to describe ideas as to what additional 

capabilities are needed in those systems.  

3.1. Management of Data Structures and 

Semantic Information  

The three design template examples require semantic 

interoperability and integration of information from 

multiple data types and data sources. Successful 

implementation in a multi-institutional setting of 

these design templates is impacted by 1) how 

effectively the researcher can discover information 

that is available and relevant to the research project 

and 2) how efficiently he can query, analyze, and 

integrate information from different resources. One 

obstacle is the fact that distributed data sources are 

oftentimes fragmented and not interoperable. 

Datasets vary in size, type, and format and are 

managed by different types of database systems. 

Naming schemes, taxonomies, and metadata used to 

represent the structure and content of the data are 

heterogeneous and managed in silos; any two 

databases may define data that contain the same 

content with completely different structure and 

semantic information.  

In order for any two entities to correctly interact with 

each other (a client program with a resource, or a 

resource with another resource), they should agree on 

both the structure of and the semantic information 

associated with data object(s) they exchange. An 

agreement on the data structure is needed so that the 

program consuming an object produced by the other 

program can correctly parse the data object. 

Agreement on the semantic information is necessary 

so that the consumer can interpret the contents of the 

data object correctly. In most Grid projects, however, 

data structures and semantic information are 

represented and shared in a rather ad hoc way; they 

are maintained in silos or embedded deep in the 

middleware code or application logic.  

caGrid addresses this problem as follows in the 

caBIG™ program; this support in the current caGrid 

1.0 architecture has been described in [5, 10], we 

provide a summary of that description here.  Each 

data or analytical resource is made accessible through 

application programming interfaces (APIs) that 

represent an object-oriented view of the resource. 

The APIs of a resource operate on published domain 

object models, which are specified as object classes 

and relationships between the classes. caGrid 

leverages several data modeling systems to manage 

and employ these domain models. Data types are 

defined in UML and converted into ISO/IEC 11179 

Administered Components. These components are 

registered in the Cancer Data Standards Repository 

(caDSR)[11] as common data elements. The 

definitions of the components are based on 

vocabulary registered in the Enterprise Vocabulary 

Services (EVS)[11]. In this way, the meaning of each 

data element and relationships between data elements 

are described semantically. At the grid level, objects 

conforming to registered domain object models are 

exchanged between Grid end points in the form of 

XML documents, i.e., an object is serialized into an 

XML document to transfer it over the wire. caGrid 

adopts the strongly-typed service paradigm in that an 

object is serialized into an XML document that 

conforms to an XML schema registered in the 

Mobius GME service[12]. Thus the XML structure of 

the object is available to any client or resource in the 

environment. In short, the properties and semantics of 

data types are defined in caDSR and EVS and the 

structure of their XML materialization in the Mobius 

GME. 

The curation and publication of semantically 

annotated common data elements in caBIG is done 

through a review process that allows freedom of 

expression from data and tool providers, while still 

building on a common ontological backbone[7]. This 

model has worked relatively well in the controlled 

environment of the three year pilot phase of the 

program. However, as the number of caBIG 

participants, projects, and tools continues to grow, a 

number of stress points are arising for the program 

and its infrastructure.  Probably the most notable such 

https://cabig.nci.nih.gov/


point is the reliance on community review, guidance, 

and curation of every single data type used on the 

Grid. Achieving the highest level of interoperability, 

Gold compliance, requires among other things, that a 

service’s data model is reviewed, harmonized, and 

registered [7].  These efforts result in the 

identification of common data elements, controlled 

vocabularies, and object-based abstractions for all 

cancer research domains.  This model is both the 

heart of the success of the caBIG approach and its 

biggest obstacle for would-be adopters or data and 

tool providers. Projects and communities, for which 

the existing model is likely to incur high 

development costs, are those working in new 

domains with data types and concepts that may be 

partially or largely uncovered by the existing 

ontology and data models.  Such projects must go 

through the process of harmonizing and registering 

all missing models and ontologies into the 

environment.  This can be a daunting task, and 

scaling the infrastructure and processes to 

accommodate such communities will be critical to its 

success.  A tempting view point is to simply allow 

these projects to either not register their models or 

anchor them to the shared ontology.  This however, 

results in a fundamental break down in the approach, 

and creates the very silos of non-interoperable 

applications which caBIG and caGrid set out to 

integrate. Maintaining the high level of integrity 

necessary for an ontology backbone without 

centralized control will be a key challenge, as well as 

a necessity to scale towards the next generation of 

science grid systems. The caBIG community and the 

caGrid development effort are starting to investigate 

support for approaches towards federating the 

storage, management, and curation of terminologies 

in the larger distributed environment, while 

facilitating and promoting harmonization with a 

common ontological backbone and reuse of 

community accepted standard data elements and 

terminologies.  

Grid middleware systems that employ SOA make use 

of XML for service interface descriptions, service 

invocations, and data transfers. A service’s interface 

is described with Web Services Description 

Language (WSDL). Data is exchanged between two 

Grid end points in structured XML messages. In the 

case of caGrid, service interfaces are described in 

WSDL conforming to the Web Services Resource 

Framework standards. Data objects are serialized into 

structured XML documents conforming to registered 

XML schemas. The objects correspond to instances 

of classes in an advertised logical object-oriented 

model and the semantics of the data is described 

through annotations of this model.  Both the model 

and the annotations are derived from the 

aforementioned curated data types. It is through this 

formal connection between the XML Schemas and 

the curated and annotated data models, that the 

semantic meaning of the structured XML can be 

understood.  That is, there is a formal binding 

between the structure of the data exchanged, and its 

underlying semantic meaning.  Current work is 

underway in caGrid to better surface the query, 

access, and management of this binding on the Grid 

itself.  Similarly, the utility of more directly 

annotating the XML layer with semantic information, 

as opposed to making it indirectly accessible through 

formal mappings, is being investigated.  For example, 

the W3C currently has a recommendation for 

Semantic Annotations for WSDL and XML Schema 

(http://www.w3.org/TR/sawsdl/).  It defines a set of 

extension attributes for the Web Services Description 

Language (WSDL) and XML Schema definition 

language that allows description of additional 

semantics of WSDL components.  SAWSDL does 

not specify a language for representing the semantic 

models, but instead provides mechanisms by which 

concepts from the semantic models can be referenced 

from within WSDL and XML Schema components 

using annotations.  This is particularly attractive, as it 

provides a framework to directly annotate 

corresponding artifacts, without requiring any 

particular constraints on our existing semantic 

infrastructure.   

Similar approaches are being investigated for dealing 

with prohibitively large, or natively binary, data in 

caGrid.  Some data types relevant to the cancer 

community are not easily, or at least efficiently, 

represented as XML.  Examples include microarray 

experiment results, which are generally massive 

numbers of floating point numbers, and images 

encoded in the industry standard Digital Imaging and 

Communications in Medicine (DICOM) format.  One 

issue is the efficient transfer of large scale data 

between Grid end points (between clients and 

http://www.w3.org/TR/sawsdl/


services or between two services). The caGrid 

infrastructure provides service components, one 

component being implemented using Java (for 

portability across platforms) and one component 

using GridFTP[13, 14], for bulk transfer of data in 

binary format. The other issue is how to represent the 

structure of the data being transferred in binary 

format. caGrid is currently investigating work such as 

the Open Grid Forum’s Data Format Description 

Language WG (DFDL-WG). The aim of this working 

group is to define an XML-based language, the Data 

Format Description Language (DFDL), for 

describing the structure of binary and character 

encoded (ASCII/Unicode) files and data streams so 

that their format, structure, and metadata can be 

exposed.  This work allows a natively binary or 

ASCII data set to be formally described by an 

annotated XML schema in such away as it can be 

processed transparently in either its native format, or 

as an XML document (with the parser performing the 

necessary translations).  Coupled with XML schema 

associated semantic annotations, this would allow 

semantic interoperability of binary data and seamless 

exchange on the Grid. 

3.2. Data and Analytical Services 

In practice, it is reasonable to assume that studies 

conforming to the example design templates will 

involve access to databases and analytical methods 

supported by heterogeneous systems. The 

Coordinated Template, for example, may involve 

datasets that are stored in a combination of relational 

database management systems (e.g., SNP data in the 

CVRG example) and XML database management 

systems (e.g., the ECG data in the CVRG example). 

Analytical programs may have been implemented on 

a variety of platforms (e.g., Matlab, C++, and Java). 

In most cases, it is prohibitively expensive or 

infeasible (due to security and ownership concerns) 

to copy data to a single DBMS or entirely port the 

implementation of an analytical program. It is also 

not efficient to develop clients that have specific 

modules for each different database system or 

analytical program.   

The MDA and the SOA facilitates system-level 

interoperability by standardization of data exchange 

protocols, interface representations, and invocation 

mechanisms in a Grid environment. They, however, 

also introduce new requirements on resources to join 

a Grid environment: resources are exposed as (object-

oriented) services; these services export well-defined 

and strongly-typed interfaces; and rich metadata is 

associated with each service and advertised in the 

environment. In order for Grid middleware 

architectures to be successful in scientific domain, 

the impact of these additional requirements as a 

barrier to entry of resources to the Grid environment 

should be minimized. Additional capabilities are 

needed to efficiently support development of Grid 

nodes, which can leverage MDA and SOA together 

and can utilize common authentication and 

authorization.  

The Prospective Template is a particularly strong 

driver for the need for standardizations on protocols, 

infrastructure of support services (such as Grid-wide 

management of structure and semantics of data 

models, metadata management and advertisement 

services), easy-to-use tools for service development, 

and templates on common service patterns and types. 

An example of tools designed to address this need is 

the Introduce toolkit[15] and the caCORE Software 

Development Kit[16]. The Introduce toolkit 

facilitates the easy development and deployment of 

strongly-typed, secure Grid services. caGrid defines a 

standard set of core interfaces for caGrid compliant 

data services. The Introduce toolkit has a plug-in, 

which generates all the standard required interfaces 

for a caGrid data service. The caCORE SDK 

implements support to take an object-oriented data 

model, which is described in UML and registered in 

caDSR and annotated using controlled vocabularies 

in EVS, and create an object-oriented database on a 

relational database system. Using both tools together, 

a developer can go from a high level definition of a 

data model in Unified Modeling Language (UML) to 

a strongly-typed Grid data service, the backend of 

which is layered on top of a relational database 

engine, relatively easily. Nevertheless, additional 

tools and infrastructure support are needed in several 

areas to facilitate integration of resources to a 

service-oriented, model-driven Grid environment.  

We now discuss some of these areas. 

There are an increasing number of applications that 

use XML and RDF/OWL to represent and manage 



datasets and semantic information. These 

applications will benefit from XML and RDF/OWL 

data services. For XML data, tools will need to be 

able to support mapping from XML schemas to 

common data elements and controlled vocabularies 

and create XML based backend databases. 

Mechanisms to translate between the common query 

language of caGrid and XML query languages such 

as XPath and XQuery. With RDF/OWL data 

services, an added challenge is the incorporation of 

semantic querying and reasoning capabilities in the 

environment. Moreover, extensions to the caDSR, 

EVS, and GME infrastructure will be needed to 

support publication of RDF/OWL Ontology 

definitions.  Support is also needed to be able to 

easily map Grid-level object models to existing 

relational, XML, and RDF/OWL databases.  

The Multi-scale Template, and the Coordinated 

Template to an extent, can involve processing of 

large volumes of image data, including three 

dimensional (time dependent) reconstruction, feature 

detection and annotation of 3-D microscopy imagery.  

This requires high performance analytical services, 

the backend of which should leverage distributed 

memory clusters, filter/stream based high 

performance computing, multi-core systems, SMP 

systems, and parallel file systems. 

 

Leveraging applications on high performance 

architectures as self describing, interoperable, and 

secure services will require: 1)  the design and 

development of gateway architectures and 2) 

deployment of efficient interfaces that support large 

scale data exchange between homogeneous or 

heterogeneous collections of processors. The caGrid 

effort is currently working on a prototype 

implementation of a TeraGrid Gateway service which 

will expose traditional HPC applications to a SOA 

environment. The challenge in this effort is to take a 

weakly typed HPC application, which utilizes the 

computing and data storage power of TeraGrid, and 

expose this application as a model driven, strongly-

typed, and secure Grid service. Solving this challenge 

will require: Generating and registering XML schema 

based data models to represent the input and output 

data of the HPC application, mapping these syntactic 

data models to a community curated common 

semantic ontology, and generating a Grid service 

which will utilize these data models as input and 

output and can manage the execution of the HPC 

application. Tooling is also needed to enable HPC 

application authors to describe their performance 

tuning and job execution parameters and expose them 

through the Grid service. If we were to map this 

process to the caGrid infrastructure, the service 

would be like the one in Figure 2.  The result of this 

process is that the notion the service is utilizing an 

HPC based application to process the request and 

generate a response is hidden by the Grid interface.  

This encapsulation will enable these applications to 

be seamlessly used in Grid workflows and 

applications without any custom standards, execution 

environment, and credential provisioning.  The 

service can be discovered, semantically and 

syntactically, and invoked in the same fashion as any 

other service in the grid and still leverage the power 

of traditional HPC/Cluster based computing 

environments.  

In some cases, a service may expose a data-parallel 

HPC application and a workflow may include 

multiple such services that exchange data with each 

other. When two parallel programs communicate 

with each other, distributed data structures need to be 

exchanged -- the data structure distributed across the 

nodes of a parallel program is redistributed and 

consumed by the nodes of the other program[17].  A 

decade ago, our research group developed prototype 

tools to support parallel data redistribution; this work 

has been continued and refined by Sussman.  

To support such a use case efficiently, tools and 

infrastructure need to support 1) a distributed data 

descriptor (DDD) interface. A client or a service can 

use this interface to interrogate how data is 
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distributed across the backend nodes of the data-

parallel service[18]. 2) A parallel data transfer 

interface. This interface would return a handle that 

specifies N end-point ports, where N is the number of 

nodes the data-parallel service backend is executed 

on. The consumer of the data, which can be a parallel 

service itself, would be able to use the handle to 

exchange distributed data structures with the parallel 

service over an N-way channel, thus executing a 

parallel MxN data communication operation[18], 

where M is the number of nodes used by the 

consumer.  

3.3. Federated Query and Orchestration of Grid 

Services 

The main objective of gathering data in a scientific 

study is to better understand the problem being 

studied and to be able to predict, explain, and 

extrapolate potential solutions to the problem and 

possible outcomes. This process requires complex 

problem solving environments that integrate 

modeling of the analysis process, on demand access, 

and processing of heterogeneous and very large 

databases. Compelling workflow requirements arise 

from all three Design Templates described here. 

Studies in the Coordinated Template, for instance, 

involve querying and assimilating information 

associated with multiple groups of subjects, 

comparing and correlating the information about the 

subject under study with this information, and 

classifying the analysis results. Data obtained from 

queries into various databases available in the 

environment are processed through a series of simple 

and complex operations including subsetting, 

correction of various data acquisition artifacts, 

filtering operations, feature detection, feature 

classification, as well as interactive inspection and 

annotation of data. 

The caGrid infrastructure provides support for 

federated querying of multiple data services to enable 

distributed aggregation and joins on object classes 

and object associations defined in domain object 

models. The current support for federated query is 

aimed at the basic functionality required for data 

subsetting and integration. Extensions to this basic 

support are needed to provide more comprehensive 

support for the design templates.  

Scalability of federated query support is important 

when there are large numbers of clients and queries 

span large volumes of data and a large number of 

services. Middleware components need to be 

developed that will enable distributed execution of 

queries by using HPC systems available in the 

environment as well as by carefully creating sub-

queries, pushing them to services or groups of 

services for execution, and coordinating data 

exchange between services to minimize 

communication overheads. Several projects have 

investigated and developed mechanisms for query 

execution in distributed environments [19-30]. A 

suite of coordination services can be developed to 

implement techniques developed in those projects.   

Another architecture requirement for federated query 

components is the support for semantic queries. 

Semantic federated query support is particularly 

important for the Coordinated Template and the 

Multiscale Template, where datasets and features 

extracted in these datasets can be annotated with 

concepts and properties from one or more ontologies, 

creating a domain-specific knowledge base.  

Middleware components are needed to support 

queries that involve selection and join criteria based 

not only on a data model, which represents the 

structure and attributes of objects in a dataset, but 

also on semantic annotations. A key requirement is to 

be able to support reasoning on ontologies based on 

description logic (DL) so that a richer set of queries 

can be executed and answered based on annotations 

inferred from explicit annotations.  Semantic 

querying capabilities, reasoning techniques and tools, 

and runtime systems have been researched and 

developed in several projects [31-36]. A suite of 

coordination services can be developed to support 

semantic querying on methods developed in those 

projects. However, more comprehensive support for 

federated query of semantic information sources will 

require a closer integration of SOA, MDA, and 

Semantic Grid technologies [37-40]. 

caGrid also provides a workflow management service 

that supports the execution and monitoring of 

workflows expressed in the Business Process 

Execution Language (BPEL)[41]. One drawback of 

the current workflow support is that all data items 

transferred between services in the workflow have to 



be routed through the workflow management service, 

a bottleneck for workflows that process large 

volumes of data. This is a problem especially in the 

multiscale and coordinated templates in which large 

volumes of image, ECG, and microarray data may 

need to be exchanged between services in a 

workflow.  When extending the workflow support, it 

is important to facilitate composition of Grid services 

into workflows without requiring any modifications 

to the application-specific service code; that is, the 

implementation of an application service (an 

analytical or a data service) need not depend on 

whether or not the service may be part of a workflow.  

To support this requirement, a workflow helper 

service, which coordinates with the workflow 

management service, will be needed. The helper 

service is directly responsible for the integration of 

an application service into a workflow. The helper 

service needs to take into consideration all the 

security issues involved in invoking an application 

service. It handles the process of receiving data from 

upstream services in the workflow, invoking the 

methods of the application service as specified in the 

workflow description, and staging the results from 

service invocations to downstream services. With the 

helper service, the need to route data and messages 

through the workflow management service is 

eliminated. The helper service can be deployed 

remotely and interacts with the application service 

like a client. It can also be deployed locally in the 

same container as the application service, saving 

overheads due to SOAP messages.  

The helper service should be designed to be modular 

and extensible so that additional functionality can be 

added. For instance, the workflow management 

service has a global view of the workflow 

environment and is responsible for managing 

multiple workflows and interpreting BPEL-based 

workflow descriptions.  The basic functionality of the 

helper service is to receive a method invocation 

command from the workflow manager service and 

handle method invocation and routing of input and 

output data. This functionality could be augmented to 

improve performance and enable hierarchical 

workflows. A workflow described in the Grid 

environment can involve services running on high-

performance Grid nodes.  

Figure 3 illustrates an example image analysis 

workflow for CT images. In this example, the 

background correction, CT wrap, axis offset, TFDK 

filter, and back projection operations can each be a 

Grid service in the environment. The background 

correction service consists of another series of 

operations. Each of these operations can be exposed 

as Grid service methods. They can also be formed 

into a workflow within the background correction 

service. If the background service runs on a high-

performance Grid node (i.e., a node hosted on a 

cluster system), it can benefit from execution of its 

portion of the Grid workflow as a fine-grained 

dataflow process. In that case, a Grid workflow 

containing the background correction service not 

only includes the network of services constituting the 

workflow and interactions between them, but should 

also include the fine-grained dataflow within the 

service. 

One of the challenges is to be able to express such 

hierarchical workflows and coordinate execution of 

the service level interactions and fine-grained 

dataflow operations within a service in the Grid level 
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Figure 3. A sample image analysis for micro-CT 

images. A series of methods are applied on the CT 

images to reconstruct a 3D volume. The 

background projection method in this example 

consists of another series of operations on data.  

The result 3D volume can then be registered with 

a 3D volume from another imaging session, 

registered volumes can be visualized and 

segmented, and segmentation results can be 

visualized by the researcher.  



workflow.  The helper service will need to be 

extended to handle not only simple method 

invocation instructions from the workflow manager 

service, but also more complex instructions 

expressing the dataflow within the service. A variety 

of middleware tools have been developed by our 

group and others to optimize execution of data 

analysis workflows as dataflow networks on 

heterogeneous compute and storage clusters[24, 28, 

42, 43]. The helper service will allow integration of 

these middleware tools to enable execution of 

dataflow networks within services. With such 

extensions, workflow scheduling now becomes a 

hierarchical process, and should take into 

consideration, for optimizing both the coarse grain 

(i.e., Grid-level workflow) and the fine grain (i.e., 

dataflow within the service) components. 

Considering HPC applications implemented from 

high level languages, compiler support for 

hierarchical workflow frameworks are needed. For 

such compilers, the functional decomposition of the 

applications plays an important role. Moreover, Grid 

environments are dynamic, meaning that the final 

decomposition of application processing into 

workflow components should be decided at runtime, 

and there should be room for adapting the generated 

code as the conditions change during execution. We 

have referred to this process as telescopic 

compilation, in the sense that the granularity of the 

decomposition can be adjusted at runtime. We intend 

to pursue such compilation problems in our future 

research efforts as well. 

3.4. Interoperability with Existing Institutional 

Systems and Other Middleware 

The Prospective Template motivates the requirement 

for interoperability of a middleware system with 

existing institutional systems and other middleware. 

As is described in Section 2, the process of managing 

clinical trials and data collection requires interaction 

with a range of open and commercial systems. Data 

in these systems are represented, exchanged, and 

accessed through a set of architectures and standards, 

such as HL7, IHE, DICOM, caBIG™ Silver and 

Gold level, developed by different communities.  

Middleware systems developed on top of a particular 

standard and framework will not be able to readily 

interact with middleware systems developed on top 

of other standards.  caGrid, for example, is built upon 

the Grid Services standards. Each data and analytical 

resource in caGrid is implemented as a Grid Service, 

which interacts with other resources and clients using 

Grid Service protocols. caGrid services are standard 

Web Service Resource Framework (WSRF v1.2)[4] 

services and can be accessed by any specification-

compliant client.  Although WSRF makes use of 

XML technologies for data representation and 

exchange, it is not directly compatible with HL7 and 

IHE, which also use XML. A set of tools and services 

are needed to enable efficient mappings between 

different messaging standards, controlled 

vocabularies, and data types associated with many 

communities. Some tools will be used to harmonize 

an external standard for data representation with the 

common data models and ontologies accepted by a 

community so that semantic interoperability with 

external systems can be achieved. Other tools and 

services will be employed as gateways between 

different protocols to support on-the-fly 

transformation of messages and resource invocations.   

3.5. Security 

Protection of sensitive data and intellectual property 

is an important component in many design templates. 

The Prospective Template in particular has strong 

requirements for authentication and controlled access 

to data because of the fact that prospective clinical 

research studies capture, reference, and manage 

patient related information. While security concerns 

are less stringent in the other design templates, 

protection of intellectual property and proprietary 

resources is important. In biomedical domain, there 

are several institutional, state-wide, and federal 

regulations on who can access sensitive data and how 

such data can be accessed and should be protected.   

The Grid Authentication and Authorization with 

Reliably Distributed Services (GAARDS) 

infrastructure of caGrid provides a comprehensive set 

of services and tools for the administration and 

enforcement of security policy in an enterprise 

Grid[44].  Nevertheless, best practices, policy, and 

infrastructure are required to meet the increasing 

demands of Grid environments.  These additional 

components are needed to address requirements 

associated with compliance with federal e-



authentication guidelines, compliance with regulatory 

policy, establishment of a Grid-wide user directory.  

Compliance with Federal e-Authentication 

Guidelines. The caBIG program has chosen to adopt 

the Federal e-Authentication initiative 

(http://www.cio.gov/eauthentication/), which 

provides guidelines for authentication.   The 

guidelines describe four levels of assurance, levels 

one through four, each with increasingly restrictive 

guidelines for authentication.   With each increasing 

level service providers have increased assurance of 

the identity of the client they are communicating 

with.   The caBIG community has adopted GAARDS 

Dorian as their account management system.   Dorian 

issues a Grid account to users based on their existing 

accounts provided by their organization.  The level 

assurance of a Grid account is determined based on 

minimum of the following: The level of assurance 

that the GAARDS Dorian infrastructure can obtain 

and the level of assurance of the participating 

organization with the lowest level of assurance. 

Currently, Dorian can facilitate management of 

accounts for level one and level two assurances.    In 

general the GAARDS and to a larger extent the Grid 

infrastructure is already capable of supporting level 3 

and level 4.  In the future additional tools or 

extensions to existing tools such as Dorian will need 

to be developed for managing and provisioning level 

3 and level 4 accounts.   

Individual organizations vary in terms of the levels of 

assurance that they can currently meet.  Our current 

research indicates that the majority of organizations 

affiliated with the caBIG community are operating at 

about a level 1.  Bringing the organizations to level 2, 

level 3, and level 4 present major challenges and will 

require the development of best practices, statement 

of procedures, and tools to aid them in doing so.  A 

scalable framework for evaluating and auditing 

organizations for compliance with the e-

authentication guidelines will also be required. 

Compliance with Regulatory Guidelines.  Ensuring 

that the Grid infrastructure meets regulatory 

guidelines such as 21CRF Part 11 and HIPAA is 

critical in being able to exchange protected health 

information (PHI).    Beginning with Dorian, the 

caGrid infrastructure is undergoing a review for 

compliance with regulatory guidelines.   To meet 

regulatory guidelines additional infrastructure will 

need to be developed to allow service providers to 

meet the auditing requirements.  Furthermore 

additional documentation, best practices, statement of 

procedures, and policies will need to be developed. 

Establishment of a Grid-wide User Directory. In 

the caBIG community authorization and access 

control requirements vary significantly amongst 

service providers, because of this the caBIG 

community has chosen to leave authorization up to 

individual service providers.  GAARDS provides 

tools that enable service providers to make 

authorization decisions. These tools include 

GAARDS Grid Grouper and the caCORE Common 

Security Module (CSM). Both Grid Grouper and 

CSM enforce access control policy based on a 

client’s Grid identity.  Although this solution is very 

effective it becomes difficult to provision access 

control policy because in order to allow a client 

access to a resource you need their Grid identity.   In 

a large, federated environment it can be difficult to 

confidently determine one’s Grid identity.    For 

example, if one wanted to allow John Doe to access 

to a resource, they would need to know John Doe’s 

Grid identity. However, there are some challenges. 

How do we confidently determine John Doe’s Grid 

identity and what if there is more than one John Doe?  

Once John Doe’s identity has been determined, how 

confident are we that it is correct?  To help alleviate 

these difficulties in the future and to support other 

similar use cases a Grid-wide user directory is 

required containing accurate information about users.   

If such a directory were to exist and service providers 

were confident in the accuracy of its information, 

then this directory could be used in conjunction with 

tools like Grid Grouper and CSM to more easily 

provision access control policy.  

4. Conclusions 

Service oriented (SOA) and model driven (MDA) 

architectures have tremendous potential to facilitate 

more effective and efficient utilization of disparate 

data and analytical resources  and address 

requirements arising from common design templates 

in scientific research. The caGrid system is a 

realization of the merging of the MDA and SOA 



paradigms with an emphasis on common data 

elements and controlled vocabularies. While it 

provides a comprehensive suite of core services and 

tools, there is still room for improvement in several 

areas. In this paper we have discussed requirements 

that arise in design templates in the translational 

research domain. We described ideas on architecture 

features in middleware systems to address these 

requirements. We focused on several core areas 

including support for data and analytical services, 

semantic information management, federated query 

and workflows, integration of HPC applications, and 

security. We believe that additional research and 

development in these and other areas such as 

interoperability between systems building on 

standards developed by different communities will 

further promote and facilitate a wider use of MDA 

and SOA technologies in science, biomedicine, and 

engineering.  
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