
Translational Research Design Templates, Grid Computing, and HPC

Joel Saltz, Scott Oster, Shannon Hastings, Stephen Langella, Renato Ferreira, Justin Permar,

Ashish Sharma, David Ervin, Tony Pan, Umit Catalyurek, Tahsin Kurc

Department of Biomedical Informatics

Ohio State University

Abstract. Design templates that involve discovery,

analysis, and integration of information resources

commonly occur in many scientific research projects.

In this paper we present examples of design

templates from the biomedical translational research

domain and discuss the requirements imposed on

Grid middleware infrastructures by them. Using

caGrid, which is a Grid middleware system based on

the model driven architecture (MDA) and the service

oriented architecture (SOA) paradigms, as a starting

point, we discuss architecture directions for MDA

and SOA based systems like caGrid to support

common design templates.

1. Introduction

Scientific research in any field encompasses a wide

range of problems and application scenarios. While a

variety of approaches are developed by researchers to

attack specific sets of problems, common aspects of

these approaches can be grouped into domain-

specific general patterns of research. We refer to such

patterns as design templates. A design template is a

representation of the common understanding of a

domain problem by researchers. It describes the

common components of the problem and generic

approaches to attacking the problem. The importance

of design templates is that they capture design

requirements and constraints that arise in broad

families of applications

We focus on translational biomedical research design

templates. The term "translational biomedical

research" is associated with research directed at

developing ways of treating or preventing diseases

through the application of basic science knowledge or

techniques. Translational research projects are

heterogeneous in nature. They target a wide variety

of diseases, test many different kinds of biomedical

hypotheses, and employ a large assortment of

experimental methodologies. Specific translational

research problems are often used as motivating use

cases for computer science research. We will present

an initial set of "design templates" that capture the

salient aspects of different types of translational

research studies. In this paper we relate translational

research design templates to middleware

requirements. This work is motivated both by

Christopher Alexander's seminal writings on design

languages used to capture and classify salient aspects

of architectural design [1] as well as the later work

on software design patterns [2] where somewhat

analogous principles were applied to software design.

Note that different aspects of a given real world

translational research study can often be described by

more than one design template. Figure 1 shows

several examples of design templates in translational

research and their primary characteristics.

We describe middleware requirements arising from

the first three design templates listed in Figure 1; 1)

coordinated system level attack on focused problem,

2) prospective research studies and 3) multiscale

translational research: investigations that encompass

genomics, epigenetics, (micro)-anatomic structure

and function.

Design Template Characteristics

Coordinated System Level Attack on a Focused

Problem (Coordinated Template)

A closely coordinated set of experiments whose results

are integrated in order to answer a set of biomedical

questions. Typically involves analysis and integration of

information from multiple complementary experiments

that yield different but closely interrelated data types

(e.g., gene expression, image, SNP, clinical data).

Prospective Clinical Research Study (Prospective

Template)

Involves studies in which a group of patients are

systematically tracked over a period of time. Prospective

studies sometimes are designed to elucidate risk factors

for development or progression of disease and are

sometimes designed to assess effects of various

treatments. In many cases, patients are accrued from

many institutions and sometimes from many countries.

Multiscale Translational Research: Investigations

that encompass genomics, epigenetics, (micro)-

anatomic structure and function (Multiscale

Template)

Studies that attempt to measure, quantify and (in many

cases) simulate biomedical phenomena in a way that

takes into account multiple spatial and (in some cases)

temporal scales. Data types include information from

light, multi-photon, electron microscopy imaging, CT,

micro-CT, MR, molecular imaging, gene expression,

mass spec, and data from simulations. Simulations and

analyses of multiscale data can be highly compute

intensive.

Secondary Data Analysis
Studies that carry out new analysis of already curated

data to gain new insights. Data is analyzed using new

analysis methods, integrated in new ways, or correlated in

new ways. Analyses may involve multiple independently

curated data services.

Adaptive Image Guided Intervention
Studies that involve interactive use of image data for

therapy planning, surgery planning, and performing

surgery. Data may come from different types of image

modalities. Image data is analyzed iteratively and

interactively to create a treatment plan, adjust drug

dosage, etc. Time dependent images and simulation Are

used in soft real time to modify plans. This is an example

of a Dynamic Data Driven Application System.

Figure 1. Examples of design templates for translational research.

Discovery, analysis, and integration of heterogeneous

information resources is a theme that commonly

occurs in many translational research design

templates. In recent years, the service oriented

architecture (SOA) and the model driven architecture

(MDA) have gained popularity as frameworks on

which to develop interoperable systems. The service-

oriented architecture (SOA) encapsulates standards

(e.g., Web Services[3], Web Services Resource

Framework[4]) on common interface syntax,

communication and service invocation protocols, and

the core capabilities of services. The model driven

architecture promotes a software design approach

based on platform independent models and metadata

to describe these models. Solutions integrating and

extending these architecture patterns offer a viable

approach to address the problem of programmatic,

syntactic, semantic interoperability, and integration,

and as a consequence the implementation of design

templates. Using caGrid[5, 6], which combines and

extends MDA and SOA for scientific research, as a

starting point, we discuss architecture features and

tools for caGrid like systems to address the

requirements of design templates in scientific

research.

2. Examples of Design Templates

In this section we will describe the following three

design templates: 1) Coordinated Systems Level

Attack on Focused Problem (Coordinated Template),

2) Prospective clinical research study (Prospective

Template) and 3) Multiscale Translational Research:

Investigations that encompass genomics, epigenetics,

(micro)-anatomic structure and function (Multiscale

Template). The other three design templates are

outlined in Figure 1; we will expand on those

elsewhere. In conjunction with the design templates,

we also present requirements that arise in these

templates.

The Coordinated Template involves a closely

coordinated set of experiments whose results are

integrated in order to answer a set of biomedical

questions. A good example of an application

described by this design template is the effort on the

part of the Cardiovascular Research Grid (CVRG)

and the Reynolds project to integrate genomic,

proteomic, ECG and image data to better predict the

likelihood of potentially lethal arrhythmias

(http://www.cvrgrid.org). This problem is of great

practical significance because at risk patients can

receive implantable cardioverter defibrillators

(ICDs). Another example of this design template is

the effort on the part of the NCI ICBP funded Ohio

State Center for Epigenetics (http://icbp.med.ohio-

state.edu) to understand the impact of epigenetic

changes on particular genomic pathways through

coordinated study of gene epigenetics, gene

sequence, gene expression, and proteomics. A deep

understanding of this integrated system can be used

to develop new drugs and to evaluate which patients

are best suited for a given therapy.

The Coordinated Template provides motivating

requirements for the development of methods for

supporting deep semantic integration of many

complementary types of information. Gene

sequence, genetic expression, epigenetics, and

protein production need to be interpreted,

represented, and modeled as highly interdependent

phenomena in this design template. In the CVRG

example, researchers access different data systems to

create candidate patient profiles using clinical,

genomic, proteomic, ECG data, and information

derived from images. These candidate patient

profiles are being compared and analyzed by CVRG

researchers to predict likelihood of potentially lethal

arrhythmias.

The Prospective Template involves studies in which a

group of patients are systematically followed over a

period of time. Prospective studies sometimes are

designed to elucidate risk factors for development or

progression of disease and are sometimes designed to

assess effects of various treatments. In many cases,

patients are accrued from many institutions and

sometimes from many countries.

The Prospective Template provides motivating

requirements for security, semantic interoperability,

and interfacing with existing institutional systems. It

is very expensive and (with a few exceptions)

impractical to develop a purpose built information

system for a particular prospective study. From the

point of view of economics, logistics, and quality

control, it makes much more sense to share a core

information architecture for many prospective trials.

Prospective template information architectures need

to interoperate with existing institutional systems in

order to better support prospective trial workflow,

and to avoid double entering of data and manual

copying of files arising from Radiology and

Pathology. Prospective trials have a huge semantic

scope; there is a vast span of possible diseases,

treatments, symptoms, Radiology and Pathology

findings, genetic and molecular studies. There is a

need to translate between ontologies, controlled

vocabularies, and data types. Subsystems that need

to be interacted with may be commercial or open

source systems that adhere to varying degrees to a

broad collection of distinct but overlapping standards

including HL7 (www.hl7.org), DICOM

(http://medical.nema.org/), IHE

(http://www.ihe.net/), LOINC

(http://www.nlm.nih.gov/research/umls/loinc_main.h

tml), caBIG™ Silver and Gold [7].

There are a variety of efforts to address the issue of

integrating information across trials. These include

the Clinical Data Interchange Standards Consortium

(CDISC) and the HL7 based Regulated Clinical

Research Information Management (RCRIM)

Technical Committee (TC). The Biomedical

Research Integrated Domain Group (BRIDG) project

described in [8] aims to systematically harmonize

existing clinical research standards and to

systematically develop specifications for new

standards to support clinical research.

The Multiscale Template models studies that attempt

to measure, quantify, and in some cases simulate,

biomedical phenomena in a way that takes into

account multiple spatial and/or temporal scales. The

study of tumor microenvironment is one excellent

example. The development of cancer occurs in both

space and time. Cancers are composed of multiple

different interacting cell types; the genetics,

epigenetics, regulation, protein expression, signaling,

growth and blood vessel recruitment take place in

time and space. Very large scale datasets are

required to describe tumor microenvironment

experimental results. Tumor microenvironment

datasets are semantically complex as they encode

ways in which morphology interrelates over time

with genetics, genomics, epigenetics, and protein

expression.

Image acquisition, processing, classification and

analysis play a central role in support of the

Multiscale Template. A single high resolution image

from digitizing microscopes can reach tens of

gigabytes in size. Hundreds of images can be

obtained from one tissue specimen, thus generating

both 2D and 3D morphological information. In

addition, image sets can be captured at multiple time

points to form a temporal view of morphological

changes. Images obtained from queries into image

databases are processed through a series of simple

and complex operations expressed as a data analysis

workflow. The workflow may include a network of

operations such as cropping, correction of various

data acquisition artifacts, filtering operations,

segmentation, registration, feature detection, feature

classification, as well as interactive inspection and

annotation of images. The results of the analysis

workflow are annotations on images and image

regions, which represent cells (a high resolution

image may contain thousands of cells), cell types,

and the spatial characteristics of the cells. These

annotations may be associated with concepts and

properties defined in different ontologies. The

researcher may compose queries to select a subset of

images with particular features (e.g., based on cell

types and distribution of cells in the image) and

associate these image features with genomic data

obtained for different types of cells. Genetic and

cellular information can further be integrated with

biological pathway information to study how genetic,

epigenetic, and cellular changes may impact major

pathways.

Simulation also plays a crucial role in the Multiscale

Template. As knowledge of basic biomedical

phenomena increases, the ability to carry out

meaningful detailed simulations dramatically

increases. Some researchers are now carrying out

tumor microenvironment simulations[9] and we

expect the prevalence of this to dramatically increase

with the improved quality of detailed multiscale data.

3. Middleware Architecture Features

In this section we will look at architecture features

for middleware systems as motivated by the

translational research design templates in a Grid

environment. We focus on five core areas:

management of data structures and semantic

information, support for data and analytical services,

support for federated query and orchestration of

services, interoperability with other infrastructure,

and security infrastructure. We will use caGrid [5, 6,

10] along with references to several other systems to

show implementation choices in these areas. The key

architecture features of caGrid are based on a wide

range of design templates from translational research

and other biomedical research areas targeted by the

cancer Biomedical Informatics Grid (caBIG™)

program (https://cabig.nci.nih.gov). A key feature of

caGrid is that it draws from the basic principles and

marriage of the model driven architecture (MDA) and

the service oriented architecture (SOA) and extends

them with the notion of strongly typed services,

common data elements, and controlled vocabularies

to address the design templates. As such, caGrid is a

good example of how middleware systems

combining MDA and SOA can address the

requirements of design templates and is a good

starting point to describe ideas as to what additional

capabilities are needed in those systems.

3.1. Management of Data Structures and

Semantic Information

The three design template examples require semantic

interoperability and integration of information from

multiple data types and data sources. Successful

implementation in a multi-institutional setting of

these design templates is impacted by 1) how

effectively the researcher can discover information

that is available and relevant to the research project

and 2) how efficiently he can query, analyze, and

integrate information from different resources. One

obstacle is the fact that distributed data sources are

oftentimes fragmented and not interoperable.

Datasets vary in size, type, and format and are

managed by different types of database systems.

Naming schemes, taxonomies, and metadata used to

represent the structure and content of the data are

heterogeneous and managed in silos; any two

databases may define data that contain the same

content with completely different structure and

semantic information.

In order for any two entities to correctly interact with

each other (a client program with a resource, or a

resource with another resource), they should agree on

both the structure of and the semantic information

associated with data object(s) they exchange. An

agreement on the data structure is needed so that the

program consuming an object produced by the other

program can correctly parse the data object.

Agreement on the semantic information is necessary

so that the consumer can interpret the contents of the

data object correctly. In most Grid projects, however,

data structures and semantic information are

represented and shared in a rather ad hoc way; they

are maintained in silos or embedded deep in the

middleware code or application logic.

caGrid addresses this problem as follows in the

caBIG™ program; this support in the current caGrid

1.0 architecture has been described in [5, 10], we

provide a summary of that description here. Each

data or analytical resource is made accessible through

application programming interfaces (APIs) that

represent an object-oriented view of the resource.

The APIs of a resource operate on published domain

object models, which are specified as object classes

and relationships between the classes. caGrid

leverages several data modeling systems to manage

and employ these domain models. Data types are

defined in UML and converted into ISO/IEC 11179

Administered Components. These components are

registered in the Cancer Data Standards Repository

(caDSR)[11] as common data elements. The

definitions of the components are based on

vocabulary registered in the Enterprise Vocabulary

Services (EVS)[11]. In this way, the meaning of each

data element and relationships between data elements

are described semantically. At the grid level, objects

conforming to registered domain object models are

exchanged between Grid end points in the form of

XML documents, i.e., an object is serialized into an

XML document to transfer it over the wire. caGrid

adopts the strongly-typed service paradigm in that an

object is serialized into an XML document that

conforms to an XML schema registered in the

Mobius GME service[12]. Thus the XML structure of

the object is available to any client or resource in the

environment. In short, the properties and semantics of

data types are defined in caDSR and EVS and the

structure of their XML materialization in the Mobius

GME.

The curation and publication of semantically

annotated common data elements in caBIG is done

through a review process that allows freedom of

expression from data and tool providers, while still

building on a common ontological backbone[7]. This

model has worked relatively well in the controlled

environment of the three year pilot phase of the

program. However, as the number of caBIG

participants, projects, and tools continues to grow, a

number of stress points are arising for the program

and its infrastructure. Probably the most notable such

https://cabig.nci.nih.gov/

point is the reliance on community review, guidance,

and curation of every single data type used on the

Grid. Achieving the highest level of interoperability,

Gold compliance, requires among other things, that a

service’s data model is reviewed, harmonized, and

registered [7]. These efforts result in the

identification of common data elements, controlled

vocabularies, and object-based abstractions for all

cancer research domains. This model is both the

heart of the success of the caBIG approach and its

biggest obstacle for would-be adopters or data and

tool providers. Projects and communities, for which

the existing model is likely to incur high

development costs, are those working in new

domains with data types and concepts that may be

partially or largely uncovered by the existing

ontology and data models. Such projects must go

through the process of harmonizing and registering

all missing models and ontologies into the

environment. This can be a daunting task, and

scaling the infrastructure and processes to

accommodate such communities will be critical to its

success. A tempting view point is to simply allow

these projects to either not register their models or

anchor them to the shared ontology. This however,

results in a fundamental break down in the approach,

and creates the very silos of non-interoperable

applications which caBIG and caGrid set out to

integrate. Maintaining the high level of integrity

necessary for an ontology backbone without

centralized control will be a key challenge, as well as

a necessity to scale towards the next generation of

science grid systems. The caBIG community and the

caGrid development effort are starting to investigate

support for approaches towards federating the

storage, management, and curation of terminologies

in the larger distributed environment, while

facilitating and promoting harmonization with a

common ontological backbone and reuse of

community accepted standard data elements and

terminologies.

Grid middleware systems that employ SOA make use

of XML for service interface descriptions, service

invocations, and data transfers. A service’s interface

is described with Web Services Description

Language (WSDL). Data is exchanged between two

Grid end points in structured XML messages. In the

case of caGrid, service interfaces are described in

WSDL conforming to the Web Services Resource

Framework standards. Data objects are serialized into

structured XML documents conforming to registered

XML schemas. The objects correspond to instances

of classes in an advertised logical object-oriented

model and the semantics of the data is described

through annotations of this model. Both the model

and the annotations are derived from the

aforementioned curated data types. It is through this

formal connection between the XML Schemas and

the curated and annotated data models, that the

semantic meaning of the structured XML can be

understood. That is, there is a formal binding

between the structure of the data exchanged, and its

underlying semantic meaning. Current work is

underway in caGrid to better surface the query,

access, and management of this binding on the Grid

itself. Similarly, the utility of more directly

annotating the XML layer with semantic information,

as opposed to making it indirectly accessible through

formal mappings, is being investigated. For example,

the W3C currently has a recommendation for

Semantic Annotations for WSDL and XML Schema

(http://www.w3.org/TR/sawsdl/). It defines a set of

extension attributes for the Web Services Description

Language (WSDL) and XML Schema definition

language that allows description of additional

semantics of WSDL components. SAWSDL does

not specify a language for representing the semantic

models, but instead provides mechanisms by which

concepts from the semantic models can be referenced

from within WSDL and XML Schema components

using annotations. This is particularly attractive, as it

provides a framework to directly annotate

corresponding artifacts, without requiring any

particular constraints on our existing semantic

infrastructure.

Similar approaches are being investigated for dealing

with prohibitively large, or natively binary, data in

caGrid. Some data types relevant to the cancer

community are not easily, or at least efficiently,

represented as XML. Examples include microarray

experiment results, which are generally massive

numbers of floating point numbers, and images

encoded in the industry standard Digital Imaging and

Communications in Medicine (DICOM) format. One

issue is the efficient transfer of large scale data

between Grid end points (between clients and

http://www.w3.org/TR/sawsdl/

services or between two services). The caGrid

infrastructure provides service components, one

component being implemented using Java (for

portability across platforms) and one component

using GridFTP[13, 14], for bulk transfer of data in

binary format. The other issue is how to represent the

structure of the data being transferred in binary

format. caGrid is currently investigating work such as

the Open Grid Forum’s Data Format Description

Language WG (DFDL-WG). The aim of this working

group is to define an XML-based language, the Data

Format Description Language (DFDL), for

describing the structure of binary and character

encoded (ASCII/Unicode) files and data streams so

that their format, structure, and metadata can be

exposed. This work allows a natively binary or

ASCII data set to be formally described by an

annotated XML schema in such away as it can be

processed transparently in either its native format, or

as an XML document (with the parser performing the

necessary translations). Coupled with XML schema

associated semantic annotations, this would allow

semantic interoperability of binary data and seamless

exchange on the Grid.

3.2. Data and Analytical Services

In practice, it is reasonable to assume that studies

conforming to the example design templates will

involve access to databases and analytical methods

supported by heterogeneous systems. The

Coordinated Template, for example, may involve

datasets that are stored in a combination of relational

database management systems (e.g., SNP data in the

CVRG example) and XML database management

systems (e.g., the ECG data in the CVRG example).

Analytical programs may have been implemented on

a variety of platforms (e.g., Matlab, C++, and Java).

In most cases, it is prohibitively expensive or

infeasible (due to security and ownership concerns)

to copy data to a single DBMS or entirely port the

implementation of an analytical program. It is also

not efficient to develop clients that have specific

modules for each different database system or

analytical program.

The MDA and the SOA facilitates system-level

interoperability by standardization of data exchange

protocols, interface representations, and invocation

mechanisms in a Grid environment. They, however,

also introduce new requirements on resources to join

a Grid environment: resources are exposed as (object-

oriented) services; these services export well-defined

and strongly-typed interfaces; and rich metadata is

associated with each service and advertised in the

environment. In order for Grid middleware

architectures to be successful in scientific domain,

the impact of these additional requirements as a

barrier to entry of resources to the Grid environment

should be minimized. Additional capabilities are

needed to efficiently support development of Grid

nodes, which can leverage MDA and SOA together

and can utilize common authentication and

authorization.

The Prospective Template is a particularly strong

driver for the need for standardizations on protocols,

infrastructure of support services (such as Grid-wide

management of structure and semantics of data

models, metadata management and advertisement

services), easy-to-use tools for service development,

and templates on common service patterns and types.

An example of tools designed to address this need is

the Introduce toolkit[15] and the caCORE Software

Development Kit[16]. The Introduce toolkit

facilitates the easy development and deployment of

strongly-typed, secure Grid services. caGrid defines a

standard set of core interfaces for caGrid compliant

data services. The Introduce toolkit has a plug-in,

which generates all the standard required interfaces

for a caGrid data service. The caCORE SDK

implements support to take an object-oriented data

model, which is described in UML and registered in

caDSR and annotated using controlled vocabularies

in EVS, and create an object-oriented database on a

relational database system. Using both tools together,

a developer can go from a high level definition of a

data model in Unified Modeling Language (UML) to

a strongly-typed Grid data service, the backend of

which is layered on top of a relational database

engine, relatively easily. Nevertheless, additional

tools and infrastructure support are needed in several

areas to facilitate integration of resources to a

service-oriented, model-driven Grid environment.

We now discuss some of these areas.

There are an increasing number of applications that

use XML and RDF/OWL to represent and manage

datasets and semantic information. These

applications will benefit from XML and RDF/OWL

data services. For XML data, tools will need to be

able to support mapping from XML schemas to

common data elements and controlled vocabularies

and create XML based backend databases.

Mechanisms to translate between the common query

language of caGrid and XML query languages such

as XPath and XQuery. With RDF/OWL data

services, an added challenge is the incorporation of

semantic querying and reasoning capabilities in the

environment. Moreover, extensions to the caDSR,

EVS, and GME infrastructure will be needed to

support publication of RDF/OWL Ontology

definitions. Support is also needed to be able to

easily map Grid-level object models to existing

relational, XML, and RDF/OWL databases.

The Multi-scale Template, and the Coordinated

Template to an extent, can involve processing of

large volumes of image data, including three

dimensional (time dependent) reconstruction, feature

detection and annotation of 3-D microscopy imagery.

This requires high performance analytical services,

the backend of which should leverage distributed

memory clusters, filter/stream based high

performance computing, multi-core systems, SMP

systems, and parallel file systems.

Leveraging applications on high performance

architectures as self describing, interoperable, and

secure services will require: 1) the design and

development of gateway architectures and 2)

deployment of efficient interfaces that support large

scale data exchange between homogeneous or

heterogeneous collections of processors. The caGrid

effort is currently working on a prototype

implementation of a TeraGrid Gateway service which

will expose traditional HPC applications to a SOA

environment. The challenge in this effort is to take a

weakly typed HPC application, which utilizes the

computing and data storage power of TeraGrid, and

expose this application as a model driven, strongly-

typed, and secure Grid service. Solving this challenge

will require: Generating and registering XML schema

based data models to represent the input and output

data of the HPC application, mapping these syntactic

data models to a community curated common

semantic ontology, and generating a Grid service

which will utilize these data models as input and

output and can manage the execution of the HPC

application. Tooling is also needed to enable HPC

application authors to describe their performance

tuning and job execution parameters and expose them

through the Grid service. If we were to map this

process to the caGrid infrastructure, the service

would be like the one in Figure 2. The result of this

process is that the notion the service is utilizing an

HPC based application to process the request and

generate a response is hidden by the Grid interface.

This encapsulation will enable these applications to

be seamlessly used in Grid workflows and

applications without any custom standards, execution

environment, and credential provisioning. The

service can be discovered, semantically and

syntactically, and invoked in the same fashion as any

other service in the grid and still leverage the power

of traditional HPC/Cluster based computing

environments.

In some cases, a service may expose a data-parallel

HPC application and a workflow may include

multiple such services that exchange data with each

other. When two parallel programs communicate

with each other, distributed data structures need to be

exchanged -- the data structure distributed across the

nodes of a parallel program is redistributed and

consumed by the nodes of the other program[17]. A

decade ago, our research group developed prototype

tools to support parallel data redistribution; this work

has been continued and refined by Sussman.

To support such a use case efficiently, tools and

infrastructure need to support 1) a distributed data

descriptor (DDD) interface. A client or a service can

use this interface to interrogate how data is

HPC/Cluster

Applications

Client Applications

Security Services

Metadata

Services

Higher Level

Services

Web

Applications
Community-

Provided Services

Authentication

Service
Dorian

Grid Grouper

Workflow ServiceFederated Query

Index Service *

IntroduceSecurity

Admin UI

EVS caDSRGME

GTS

(Authority)

GTS

(Subordinate)

caGrid

Portal

caGrid

Browser

Data

Services

Analytical

Services

*All Services Register with the Index Service

Security

Services
Workflow UI

HPC Grid Service X

image

servers

genomic/

proteomic

algorithms

image

algorithms

Figure 2. A gateway service for HPC

applications.

distributed across the backend nodes of the data-

parallel service[18]. 2) A parallel data transfer

interface. This interface would return a handle that

specifies N end-point ports, where N is the number of

nodes the data-parallel service backend is executed

on. The consumer of the data, which can be a parallel

service itself, would be able to use the handle to

exchange distributed data structures with the parallel

service over an N-way channel, thus executing a

parallel MxN data communication operation[18],

where M is the number of nodes used by the

consumer.

3.3. Federated Query and Orchestration of Grid

Services

The main objective of gathering data in a scientific

study is to better understand the problem being

studied and to be able to predict, explain, and

extrapolate potential solutions to the problem and

possible outcomes. This process requires complex

problem solving environments that integrate

modeling of the analysis process, on demand access,

and processing of heterogeneous and very large

databases. Compelling workflow requirements arise

from all three Design Templates described here.

Studies in the Coordinated Template, for instance,

involve querying and assimilating information

associated with multiple groups of subjects,

comparing and correlating the information about the

subject under study with this information, and

classifying the analysis results. Data obtained from

queries into various databases available in the

environment are processed through a series of simple

and complex operations including subsetting,

correction of various data acquisition artifacts,

filtering operations, feature detection, feature

classification, as well as interactive inspection and

annotation of data.

The caGrid infrastructure provides support for

federated querying of multiple data services to enable

distributed aggregation and joins on object classes

and object associations defined in domain object

models. The current support for federated query is

aimed at the basic functionality required for data

subsetting and integration. Extensions to this basic

support are needed to provide more comprehensive

support for the design templates.

Scalability of federated query support is important

when there are large numbers of clients and queries

span large volumes of data and a large number of

services. Middleware components need to be

developed that will enable distributed execution of

queries by using HPC systems available in the

environment as well as by carefully creating sub-

queries, pushing them to services or groups of

services for execution, and coordinating data

exchange between services to minimize

communication overheads. Several projects have

investigated and developed mechanisms for query

execution in distributed environments [19-30]. A

suite of coordination services can be developed to

implement techniques developed in those projects.

Another architecture requirement for federated query

components is the support for semantic queries.

Semantic federated query support is particularly

important for the Coordinated Template and the

Multiscale Template, where datasets and features

extracted in these datasets can be annotated with

concepts and properties from one or more ontologies,

creating a domain-specific knowledge base.

Middleware components are needed to support

queries that involve selection and join criteria based

not only on a data model, which represents the

structure and attributes of objects in a dataset, but

also on semantic annotations. A key requirement is to

be able to support reasoning on ontologies based on

description logic (DL) so that a richer set of queries

can be executed and answered based on annotations

inferred from explicit annotations. Semantic

querying capabilities, reasoning techniques and tools,

and runtime systems have been researched and

developed in several projects [31-36]. A suite of

coordination services can be developed to support

semantic querying on methods developed in those

projects. However, more comprehensive support for

federated query of semantic information sources will

require a closer integration of SOA, MDA, and

Semantic Grid technologies [37-40].

caGrid also provides a workflow management service

that supports the execution and monitoring of

workflows expressed in the Business Process

Execution Language (BPEL)[41]. One drawback of

the current workflow support is that all data items

transferred between services in the workflow have to

be routed through the workflow management service,

a bottleneck for workflows that process large

volumes of data. This is a problem especially in the

multiscale and coordinated templates in which large

volumes of image, ECG, and microarray data may

need to be exchanged between services in a

workflow. When extending the workflow support, it

is important to facilitate composition of Grid services

into workflows without requiring any modifications

to the application-specific service code; that is, the

implementation of an application service (an

analytical or a data service) need not depend on

whether or not the service may be part of a workflow.

To support this requirement, a workflow helper

service, which coordinates with the workflow

management service, will be needed. The helper

service is directly responsible for the integration of

an application service into a workflow. The helper

service needs to take into consideration all the

security issues involved in invoking an application

service. It handles the process of receiving data from

upstream services in the workflow, invoking the

methods of the application service as specified in the

workflow description, and staging the results from

service invocations to downstream services. With the

helper service, the need to route data and messages

through the workflow management service is

eliminated. The helper service can be deployed

remotely and interacts with the application service

like a client. It can also be deployed locally in the

same container as the application service, saving

overheads due to SOAP messages.

The helper service should be designed to be modular

and extensible so that additional functionality can be

added. For instance, the workflow management

service has a global view of the workflow

environment and is responsible for managing

multiple workflows and interpreting BPEL-based

workflow descriptions. The basic functionality of the

helper service is to receive a method invocation

command from the workflow manager service and

handle method invocation and routing of input and

output data. This functionality could be augmented to

improve performance and enable hierarchical

workflows. A workflow described in the Grid

environment can involve services running on high-

performance Grid nodes.

Figure 3 illustrates an example image analysis

workflow for CT images. In this example, the

background correction, CT wrap, axis offset, TFDK

filter, and back projection operations can each be a

Grid service in the environment. The background

correction service consists of another series of

operations. Each of these operations can be exposed

as Grid service methods. They can also be formed

into a workflow within the background correction

service. If the background service runs on a high-

performance Grid node (i.e., a node hosted on a

cluster system), it can benefit from execution of its

portion of the Grid workflow as a fine-grained

dataflow process. In that case, a Grid workflow

containing the background correction service not

only includes the network of services constituting the

workflow and interactions between them, but should

also include the fine-grained dataflow within the

service.

One of the challenges is to be able to express such

hierarchical workflows and coordinate execution of

the service level interactions and fine-grained

dataflow operations within a service in the Grid level

Background correction

CT warp

Axis Offset

TFDK Filter (Feldkamp’s alg)

Back Projection

CT images

3D Volume

Read

Image

subsample

correction

air

attenuation

scale

air

Create-first-sino

CT Warp

CT images

Registration

Visualization Segmentation Visualization

Figure 3. A sample image analysis for micro-CT

images. A series of methods are applied on the CT

images to reconstruct a 3D volume. The

background projection method in this example

consists of another series of operations on data.

The result 3D volume can then be registered with

a 3D volume from another imaging session,

registered volumes can be visualized and

segmented, and segmentation results can be

visualized by the researcher.

workflow. The helper service will need to be

extended to handle not only simple method

invocation instructions from the workflow manager

service, but also more complex instructions

expressing the dataflow within the service. A variety

of middleware tools have been developed by our

group and others to optimize execution of data

analysis workflows as dataflow networks on

heterogeneous compute and storage clusters[24, 28,

42, 43]. The helper service will allow integration of

these middleware tools to enable execution of

dataflow networks within services. With such

extensions, workflow scheduling now becomes a

hierarchical process, and should take into

consideration, for optimizing both the coarse grain

(i.e., Grid-level workflow) and the fine grain (i.e.,

dataflow within the service) components.

Considering HPC applications implemented from

high level languages, compiler support for

hierarchical workflow frameworks are needed. For

such compilers, the functional decomposition of the

applications plays an important role. Moreover, Grid

environments are dynamic, meaning that the final

decomposition of application processing into

workflow components should be decided at runtime,

and there should be room for adapting the generated

code as the conditions change during execution. We

have referred to this process as telescopic

compilation, in the sense that the granularity of the

decomposition can be adjusted at runtime. We intend

to pursue such compilation problems in our future

research efforts as well.

3.4. Interoperability with Existing Institutional

Systems and Other Middleware

The Prospective Template motivates the requirement

for interoperability of a middleware system with

existing institutional systems and other middleware.

As is described in Section 2, the process of managing

clinical trials and data collection requires interaction

with a range of open and commercial systems. Data

in these systems are represented, exchanged, and

accessed through a set of architectures and standards,

such as HL7, IHE, DICOM, caBIG™ Silver and

Gold level, developed by different communities.

Middleware systems developed on top of a particular

standard and framework will not be able to readily

interact with middleware systems developed on top

of other standards. caGrid, for example, is built upon

the Grid Services standards. Each data and analytical

resource in caGrid is implemented as a Grid Service,

which interacts with other resources and clients using

Grid Service protocols. caGrid services are standard

Web Service Resource Framework (WSRF v1.2)[4]

services and can be accessed by any specification-

compliant client. Although WSRF makes use of

XML technologies for data representation and

exchange, it is not directly compatible with HL7 and

IHE, which also use XML. A set of tools and services

are needed to enable efficient mappings between

different messaging standards, controlled

vocabularies, and data types associated with many

communities. Some tools will be used to harmonize

an external standard for data representation with the

common data models and ontologies accepted by a

community so that semantic interoperability with

external systems can be achieved. Other tools and

services will be employed as gateways between

different protocols to support on-the-fly

transformation of messages and resource invocations.

3.5. Security

Protection of sensitive data and intellectual property

is an important component in many design templates.

The Prospective Template in particular has strong

requirements for authentication and controlled access

to data because of the fact that prospective clinical

research studies capture, reference, and manage

patient related information. While security concerns

are less stringent in the other design templates,

protection of intellectual property and proprietary

resources is important. In biomedical domain, there

are several institutional, state-wide, and federal

regulations on who can access sensitive data and how

such data can be accessed and should be protected.

The Grid Authentication and Authorization with

Reliably Distributed Services (GAARDS)

infrastructure of caGrid provides a comprehensive set

of services and tools for the administration and

enforcement of security policy in an enterprise

Grid[44]. Nevertheless, best practices, policy, and

infrastructure are required to meet the increasing

demands of Grid environments. These additional

components are needed to address requirements

associated with compliance with federal e-

authentication guidelines, compliance with regulatory

policy, establishment of a Grid-wide user directory.

Compliance with Federal e-Authentication

Guidelines. The caBIG program has chosen to adopt

the Federal e-Authentication initiative

(http://www.cio.gov/eauthentication/), which

provides guidelines for authentication. The

guidelines describe four levels of assurance, levels

one through four, each with increasingly restrictive

guidelines for authentication. With each increasing

level service providers have increased assurance of

the identity of the client they are communicating

with. The caBIG community has adopted GAARDS

Dorian as their account management system. Dorian

issues a Grid account to users based on their existing

accounts provided by their organization. The level

assurance of a Grid account is determined based on

minimum of the following: The level of assurance

that the GAARDS Dorian infrastructure can obtain

and the level of assurance of the participating

organization with the lowest level of assurance.

Currently, Dorian can facilitate management of

accounts for level one and level two assurances. In

general the GAARDS and to a larger extent the Grid

infrastructure is already capable of supporting level 3

and level 4. In the future additional tools or

extensions to existing tools such as Dorian will need

to be developed for managing and provisioning level

3 and level 4 accounts.

Individual organizations vary in terms of the levels of

assurance that they can currently meet. Our current

research indicates that the majority of organizations

affiliated with the caBIG community are operating at

about a level 1. Bringing the organizations to level 2,

level 3, and level 4 present major challenges and will

require the development of best practices, statement

of procedures, and tools to aid them in doing so. A

scalable framework for evaluating and auditing

organizations for compliance with the e-

authentication guidelines will also be required.

Compliance with Regulatory Guidelines. Ensuring

that the Grid infrastructure meets regulatory

guidelines such as 21CRF Part 11 and HIPAA is

critical in being able to exchange protected health

information (PHI). Beginning with Dorian, the

caGrid infrastructure is undergoing a review for

compliance with regulatory guidelines. To meet

regulatory guidelines additional infrastructure will

need to be developed to allow service providers to

meet the auditing requirements. Furthermore

additional documentation, best practices, statement of

procedures, and policies will need to be developed.

Establishment of a Grid-wide User Directory. In

the caBIG community authorization and access

control requirements vary significantly amongst

service providers, because of this the caBIG

community has chosen to leave authorization up to

individual service providers. GAARDS provides

tools that enable service providers to make

authorization decisions. These tools include

GAARDS Grid Grouper and the caCORE Common

Security Module (CSM). Both Grid Grouper and

CSM enforce access control policy based on a

client’s Grid identity. Although this solution is very

effective it becomes difficult to provision access

control policy because in order to allow a client

access to a resource you need their Grid identity. In

a large, federated environment it can be difficult to

confidently determine one’s Grid identity. For

example, if one wanted to allow John Doe to access

to a resource, they would need to know John Doe’s

Grid identity. However, there are some challenges.

How do we confidently determine John Doe’s Grid

identity and what if there is more than one John Doe?

Once John Doe’s identity has been determined, how

confident are we that it is correct? To help alleviate

these difficulties in the future and to support other

similar use cases a Grid-wide user directory is

required containing accurate information about users.

If such a directory were to exist and service providers

were confident in the accuracy of its information,

then this directory could be used in conjunction with

tools like Grid Grouper and CSM to more easily

provision access control policy.

4. Conclusions

Service oriented (SOA) and model driven (MDA)

architectures have tremendous potential to facilitate

more effective and efficient utilization of disparate

data and analytical resources and address

requirements arising from common design templates

in scientific research. The caGrid system is a

realization of the merging of the MDA and SOA

paradigms with an emphasis on common data

elements and controlled vocabularies. While it

provides a comprehensive suite of core services and

tools, there is still room for improvement in several

areas. In this paper we have discussed requirements

that arise in design templates in the translational

research domain. We described ideas on architecture

features in middleware systems to address these

requirements. We focused on several core areas

including support for data and analytical services,

semantic information management, federated query

and workflows, integration of HPC applications, and

security. We believe that additional research and

development in these and other areas such as

interoperability between systems building on

standards developed by different communities will

further promote and facilitate a wider use of MDA

and SOA technologies in science, biomedicine, and

engineering.

Acknowledgements. This work was supported in

part by the National Cancer Institute (NCI) caGrid

Developer grant 79077CBS10; the State of Ohio

Board of Regents BRTT Program grants ODOD

AGMT TECH 04-049 and BRTT02-0003; funds

from The Ohio State University Comprehensive

Cancer Center-Arthur G. James Cancer Hospital and

Richard J. Solove Research Institute; the National

Science Foundation (NSF) grants: CNS-0615155,

CNS-0403342, CCF-0342615, CNS-0426241, and

CNS-0406386; the NHLBI R24 HL085343 grant;

and the National Institutes of Health (NIH) U54

CA113001 and R01 LM009239 grants.

Bibliography

[1] C. Alexander, A Pattern Language: Towns,

Buildings, Construction (Center for

Environmental Structure Series) Oxford

University Press, USA 1977.

[2] E. Gamma, R. Helm, R. Johnson, and J. M.

Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software

(Addison-Wesley Professional Computing

Series): Addison-Wesley Professional 1994.
[3] S. Graham, S. Simeonov, T. Boubez, D.

Davis, G. Daniels, Y. Nakamura, and R.

Neyama, Building Web Services with Java:

Making Sense of XML, SOAP, WSDL, and

UDDI: SAMS Publishing, 2002.

[4] I. Foster, K. Czajkowski, D. Ferguson, J.

Frey, S. Graham, T. Maguire, D. Snelling,

and S. Tuecke, "Modeling and Managing

State in Distributed Systems: The Role of

OGSI and WSRF," Proceedings of IEEE,

vol. 93, pp. 604-612, 2005.
[5] S. Oster, Hastings, S., Langella, S., Ervin,

D., Madduri, R., Kurc, T., Siebenlist, F.,

Foster, I., Shanbhag, K., Covitz, P., Saltz, J.,

"caGrid 1.0: A Grid Enterprise Architecture

for Cancer Research," in Proceedings of the

2007 American Medical Informatics

Association (AMIA) Annual Symposium

Chicago, IL, 2007.

[6] J. Saltz, S. Oster, S. Hastings, T. Kurc, W.

Sanchez, M. Kher, A. Manisundaram, K.

Shanbhag, and P. Covitz, "caGrid: Design

and Implementation of the Core
Architecture of the Cancer Biomedical

Informatics Grid," Bioinformatics, vol. 22,

pp. 1910-1916, 2006.

[7] "caBIG Compatibility Guidelines,"

https://cabig.nci.nih.gov/guidelines_docume

ntation/caBIGCompatGuideRev2_final.pdf,

2005.

[8] D. B. Fridsma, J. Evans, S. Hastak, and C.

N. Mead, "The BRIDG Project: A Technical

Report," Journal of American Medical

Informatics Association (JAMIA). PrePrint:
Accepted Article. Published December 20,

2007 as doi:10.1197/jamia.M2556, 2008.

[9] W. A. Quaranta V, Cummings PT, Anderson

AR, "Mathematical modeling of cancer: the

future of prognosis and treatment," Clin

Chim Acta, vol. 357, pp. 173-179, 2005.

[10] S. Oster, S. Langella, S. Hastings, D. Ervin,

R. Madduri, J. Phillips, T. Kurc, F.

Siebenlist, P. Covitz, K. Shanbhag, I. Foster,

and J. Saltz, "caGrid 1.0: An Enterprise Grid

Infrastructure for Biomedical Research,"

Journal of American Medical Informatics
Association (JAMIA). PrePrint: Accepted

Article. Published December 20, 2007 as

doi:10.1197/jamia.M2522, 2008.

[11] P. A. Covitz, Hartel, F., Schaefer, C.,

Coronado, S., Fragoso, G., Sahni, H.,

Gustafson, S., Buetow, K.H., "caCORE: A

Common Infrastructure for Cancer

Informatics," Bioinformatics, vol. 19, pp.

2404-2412, 2003.

[12] S. Hastings, S. Langella, S. Oster, and J.

Saltz, "Distributed Data Management and
Integration: The Mobius Project,"

Proceedings of the Global Grid Forum 11

(GGF11) Semantic Grid Applications

Workshop, Honolulu, Hawaii, USA., pp. 20-

38, 2004.

[13] B. Allcock, J. Bester, J. Bresnahan, A.

Chervenak, I. Foster, C. Kesselman, S.

Meder, V. Nefedova, D. Quesnal, and T. S.,

"Data Management and Transfer in High
Performance Computational Grid

Environments," Parallel Computing

Journal, vol. 28, pp. 749-771, 2002.

[14] B. Allcock, J. Breshanan, R. Kettimuthu, M.

Link, C. Dumitrescu, I. Raicu, and I. Foster,

"The Globus Striped GridFTP Framework

and Server," in Supercomputing 2005 (SC

2005), 2005.

[15] S. Hastings, S. Oster, S. Langella, D. Ervin,

T. Kurc, and J. Saltz, "Introduce: An Open

Source Toolkit for Rapid Development of

Strongly Typed Grid Services," Journal of
Grid Computing, vol. 5, pp. 407-427, 2007.

[16] J. Phillips, R. Chilukuri, G. Fragoso, D.

Warzel, and P. A. Covitz, "The caCORE

Software Development Kit: Streamlining

construction of interoperable biomedical

information services.," BMC Medical

Informatics and Decision Making, vol. 6,

2006.

[17] J.-Y. Lee and A. Sussman, "High

performance communication between

parallel programs.," in Proceedings of 2005
Joint Workshop on High-Performance Grid

Computing and High-Level Parallel

Programming Models (HIPS-HPGC 2005).

IEEE Computer Society Press, 2005.

[18] J. S. Wu and A. Sussman, "Flexible control

of data transfers between parallel programs,"

in Proceedings of the Fifth International

Workshop on Grid Computing - GRID 2004,

IEEE Computer Society Press, 2004, pp.

226-234.

[19] H. Andrade, T. Kurc, A. Sussman, and J.

Saltz, "Active Proxy-G: Optimizing the
Query Execution Process in the Grid," in

Proceedings of the ACM/IEEE

Supercomputing Conference (SC2002)

Baltimore, MD: ACM Press/IEEE Computer

Society Press, 2002.

[20] W. H. Bell, D. Bosio, W. Hoschek, P.

Kunszt, G. McCance, and M. Silander,

"Project Spitfire -- Towards Grid Web

Service Databases," Global Grid Forum

Informational Document, GGF5, Edinburgh,

Scotland, 2002.
[21] M. Beynon, T. Kurc, U. Catalyurek, C.

Chang, A. Sussman, and J. Saltz,

"Distributed Processing of Very Large

Datasets with DataCutter," Parallel

Computing, vol. 27, pp. 1457-2478, 2001.

[22] C. Chang, T. Kurc, A. Sussman, U.

Catalyurek, and J. Saltz, "A Hypergraph-

Based Workload Partitioning Strategy for

Parallel Data Aggregation," in Proceedings
of the Tenth SIAM Conference on Parallel

Processing for Scientific Computing

Portsmouth, VA, 2001.

[23] D. DeWitt and J. Gray, "Parallel Database

Systems: the Future of High Performance

Database Systems," Communications of the

ACM, vol. 35, pp. 85--98, 1992.

[24] C. Isert and K. Schwan, "ACDS: Adapting

Computational Data Streams for High

Performance," in 14th International Parallel

& Distributed Processing Symposium

(IPDPS 2000), IEEE Computer Society
Press, Cancun, Mexico 2000.

[25] D. Kossman, "The State of the Art in

Distributed Query Processing.," ACM

Computing Surveys, vol. 32, pp. 422-469,

2000.

[26] S. Narayanan, U. Catalyurek, T. Kurc, and J.

Saltz, "Applying Database Support for

Large Scale Data Driven Science in

Distributed Environments.," in Proceedings

of the 4th International Workshop on Grid

Computing (Grid 2003), 2003.
[27] S. Narayanan, T. Kurc, U. Catalyurek, and J.

Saltz, "Database Support for Data-driven

Scientific Applications in the Grid," Parallel

Processing Letters, vol. 13 pp. 245-273,

2003.

[28] B. Plale and K. Schwan, "dQUOB:

Managing Large Data Flows Using

Dynamic Embedded Queries," in IEEE

International High Performance Distributed

Computing (HPDC), 2000.

[29] A. P. Sheth and J. A. Larson, "Federated

Database Systems for Managing Distributed,
Heterogeneous, and Autonomous

Databases.," ACM Computing Surveys, vol.

22 pp. 183-236, 1990.

[30] J. Smith, A. Gounaris, P. Watson, N. W.

Paton, A. A. Fernandes, and R. Sakellariou,

"Distributed Query Processing on the Grid.,"

in Proceedings of the Third Workshop on

Grid Computing (GRID2002), Baltimore,

MD, 2002.

[31] J. Broekstra, A. Kampman, and F. van

Harmelen, "Sesame: A generic architecture
for storing and querying RDF and RDF

schema.," International Semantic Web

Conference, Lecture Notes in Computer

Science, pp. 54--68, 2002.

[32] S. Harris and N. Gibbins, "3store: Efficient

bulk RDF storage.," 1st International

Workshop on Practical and Scalable

Semantic Web Systems held at ISWC} 2003,

volume 89 of CEUR Workshop Proceedings.

CEUR-WS.org, 2003.
[33] K. Wilkinson, C. Sayers, H. A. Kuno, and

D. Reynolds, "Efficient RDF storage and

retrieval in Jena2," Proceedings of VLDB

Workshop on Semantic Web and Databases,

pp. 131-150, 2003.

[34] V. Haarslev and R. Moller, "Racer: A core

inference engine for the semantic web.," 2nd

International Workshop on Evaluation of

Ontology-based Tools (EON 2003), vol. 87,

2003.

[35] I. Horrocks, "The FaCT system.,"

Proceedings of the International Conference
on Automated Reasoning with Analytic

Tableaux and Related Methods (TABLEAUX

98), volume 1397 of LNAI, pp. 307-312,

1998.

[36] A. Kiryakov, D. Ognyanov, and D. Manov,

"OWLIM - A pragmatic semantic repository

for OWL.," WISE Workshops, volume 3807

of Lecture Notes in Computer Science, pp.

182-192, 2005.

[37] "Semantic Grid Community Portal,

http://www.semanticgrid.org/," 2008.
[38] O. Corcho, P. Alper, I. Kotsiopoulos, P.

Missier, S. Bechhofer, and C. A. Goble, "An

overview of S-OGSA: A Reference

Semantic Grid Architecture.," Journal of

Web Semantics, vol. 4, pp. 102-115, 2006.

[39] C. A. Goble, C. Kesselman, and Y. Sure,

"Semantic Grid: The Convergence of

Technologies," Internationales Begegnungs-

und Forschungszentrum für Informatik

(IBFI), 2005.

[40] S. Newhouse, A. Mayer, N. Furmento, S.

McGough, J. Stanton, and J. Darlington,
"Laying the Foundations for the Semantic

Grid," in Proceedings of the AISB'02

Symposium on AI and GRID Computing.,

2002.

[41] "Business Process Execution Language for

Web Services, Version 1.0," http://www-

106.ibm.com/developerworks/webservices/li

brary/ws-bpel/, 2002.

[42] M. Beynon, C. Chang, U. Catalyurek, T.

Kurc, A. Sussman, H. Andrade, R. Ferreira,

and J. Saltz, "Processing Large-Scale
Multidimensional Data in Parallel and

Distributed Environments," Parallel

Computing, vol. 28, pp. 827-859, 2002.

[43] R. A. Ferreira, W. Meira, D. Guedes, L. M.

A. Drummond, B. Coutinho, G. Teodoro,

Tavares, T., , R. Araujo, and G. T. Ferreira,

"Anthill: a scalable run-time environment

for data mining applications," in 17th

International Symposium on Computer
Architecture and High Performance

Computing (SBAC-PAD 2005) 2005.

[44] S. Langella, Oster, S., Hastings, S.,

Siebenlist, F., Phillips, J., Ervin, D., Permar,

J., Kurc, T., Saltz, J., "The Cancer

Biomedical Informatics Grid (caBIG™)

Security Infrastructure," in Proceedings of

the 2007 American Medical Informatics

Association (AMIA) Annual Symposium

Chicago, IL, 2007.

http://www.semanticgrid.org/,
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

