
GWD-R.96 Andre Merzky
SAGA-RG Vrije Universiteit, Amsterdam

Version: 0.1 November 9, 2007

SAGA Extension: Checkpoint and Recovery API (CPR)

Status of This Document

This document provides information to the grid community, proposing a stan-
dard for an extension to the Simple API for Grid Applications (SAGA). As such
it depends upon the SAGA Core API Specification [1], on the GridCPR Use
Case document [?]and the GridCPR architecture document [?]. This document
is supposed to be used as input to the definition of language specific bindings for
this API extension, and as reference for implementors of these language bind-
ings. Distribution of this document is unlimited.

Copyright Notice

Copyright c© Open Grid Forum (2007). All Rights Reserved.

Abstract

FIXME: real citations!

This document specifies the an Checkpoint and Recovery (CPR) API extension
to the Simple API for Grid Applications (SAGA), a high level, application-
oriented API for grid application development. This CPR API is motivated by
a number of use cases collected by the GridCPR Working Group in GFD.92
(”Use Cases for Grid Checkpoint and Recovery”). Scope and semantics of the
SAGA CPR API extension is motivated by the GridCPR architecture docu-
ment GFD.93 (”An Architecture for Grid Checkpoint and Recovery (GridCPR)
Services and a GridCPR Application Programming Interface”).

Contents

1 Introduction 2

1.1 Notational Conventions . 2

GWD-R.96 Introduction November 9, 2007

1.2 Security Considerations . 2

2 SAGA CPR API 4

2.1 Introduction . 4

2.2 Specification . 5

2.3 Specification Details . 8

3 Intellectual Property Issues 9

3.1 Contributors . 9

3.2 Intellectual Property Statement 9

3.3 Disclaimer . 10

3.4 Full Copyright Notice . 10

References 11

1 Introduction

This document specifies an API for the initiation and management of application
checkpointing and recovery operations.

1.1 Notational Conventions

In structure, notation and conventions, this documents follows those of the
SAGA Core API specification [1], unless noted otherwise.

1.2 Security Considerations

As the SAGA API is to be implemented on different types of Grid (and non-
Grid) middleware, it does not specify a single security model, but rather provides
hooks to interface to various security models – see the documentation of the
saga::context class in Section ?? for details.

saga-rg@ogf.org 2

GWD-R.96 Introduction November 9, 2007

A SAGA implementation is considered secure if and only if it fully supports
(i.e., implements) the security models of the middleware layers it builds upon,
and neither provides any (intentional or unintentional) means to by-pass these
security models, nor weakens these security models’ policies in any way.

saga-rg@ogf.org 3

GWD-R.96 SAGA CPR API November 9, 2007

2 SAGA CPR API

2.1 Introduction

This document specifies an API for the initiation and management of application
checkpointing and recovery operations. The scope and semantics of this API
are motivated by the GridCPR architecture document [?]. Its capabilities fall
in the following categories:

A – checkpoint and recovery operations

A.1 – specification of application checkpointing capabilities and policies

A.2 – receiving notification of checkpointing requests

A.3 – issuing notification of checkpointing requests

A.4 – receiving notification of recovery requstes

A.5 – issuing notification of recovery requstes

B – management of checkpoints

B.1 – meta data and description of checkpoints

B.2 – location and movement of checkpoints

B.3 – security, consistency and lifetime management of checkpoints

The capabilites referenced under A are, at least partly, already included in the
SAGA Core Job API, so it seems sensible to define the remaining capabilies
in A also as part of the SAGA Core Job API. This document does that by
specifying an additional interface (checkpointable) which is to be implemented
by the saga::job class.

The capabilities listed under B are closely related to the management of files and
logical files, which, in the SAGA Core API, share the abstraction of an hierachi-
cal name_space. It seems sensible to define the CPR checkpoint management
capabilities in the same framework. This document does that by defining a
checkpoint namespace, with the classes cpr_dir and cpr_entry.

2.1.1 The checkpointable Interface

The SAGA CPR API defines a checkpoint (cpr_entry) to be a represent a
complate snapshot of a state of an application. An application (saga::job)
can consist of multiple proceses, and each process may write any number (0...n)
of checkpoint files; checkpoints thus represent a number of individual checkpoint

saga-rg@ogf.org 4

GWD-R.96 SAGA CPR API November 9, 2007

files. The files the checkpoint is comprised of are not managed by the appli-
cation, but by the middleware. The files are refered to by a integer number
FIXME: string?, and the application can open the individual files for reading
and/or writing.

Checkpoints are organized in a SAGA namespace (i.e. saga::cpr_entry and
saga::cpr_dir inherit saga::ns_entry and saga::ns_dir). An additional
relationship between cpr_entries is stablished by their order in time: a check-
point taken directly before another checkpoint is named parent , a checkpoint
taken directly after another checkpoint is named child . The CPR middleware
SHOULD be able to identify parent/child relationships automatically – this can,
however, be enforced and also changed by using the set_parent()/remove_parent()
and set_child()/remove_child() methods. Also, a parent may have more
than one child, but a child may have only zero or one parent. This allows ef-
fectively for a tree of checkpoints, which allow applications to rewind to older
checkpoints, or to checkpoints with a different

A checkpointable job (saga::cpr_job) offers, compared to a normal saga::job,
some additional methods (checkpoint() and recover()) and metrics (Checkpoint,
Checkpointed, Recover and Recovered) for checkpoint and recovery opera-
tions.

The exact physical location of checkpoint files is, in general, not under applica-
tion control - it is, however, possible to ensure co-location of the job execution
host and checkpoint files (cpr_stage_in(), by default fetching the last check-
point taken), It is also possible to enforce the opposite, and to stage out a check-
point file to ensure its availability on node shutdown etc. (cpr_stage_out(),
also by default refering to the last checkpoint taken).

2.1.2 The Checkpoint Name Space – cpr dir and cpr entry

FIXME: high level description

2.1.3 Checkpoint URLs

FIXME: same conventions as in core, but recommend gridrpc as
scheme.

2.2 Specification

saga-rg@ogf.org 5

GWD-R.96 SAGA CPR API November 9, 2007

package saga.cpr
{
class cpr_job : extends saga::job,

implements saga::steerable
// from job saga::task
// from job saga::async
// from job saga::attribute
// from task saga::object
// from task saga::monitorable
// from object saga::error_handler

{
list_checkpoints (out array<string> urls);

// cpr actions
checkpoint (in string url = "");
recover (in string url = "");

// implies run() if New

// manage locality of checkpoints
cpr_stage_out (in string url = "");
cpr_stage_in (in string url = "");

get_last_cpr (out string url);

// Metrics:
// name: Checkpoint
// desc: to be fired when an application level
// checkpoint is requested
// mode: ReadWrite
// unit: 1
// type: String
// value: ’’
// notes: - the metric acts as trigger
// - the value can optionally be set to
// an cpr_entry URL to be used for the
// resulting checkpoint
//
// name: Checkpointed
// desc: to be fired when application level
// checkpoint is finished
// mode: ReadWrite
// unit: 1
// type: Trigger
// value: ’’
//
// name: Recover

saga-rg@ogf.org 6

GWD-R.96 SAGA CPR API November 9, 2007

// desc: to be fired when application level
// recovery is requested
// mode: ReadWrite
// unit: 1
// type: String
// value: ’’
// notes: - the metric acts as trigger
// - the value can optionally be set to
// an cpr_entry URL to be used for the
// recovery
//
// name: Recovered
// desc: to be fired when application level
// recovery is finished
// mode: ReadWrite
// unit: 1
// type: Trigger
// value: ’’

}

class cpr_dir : extents saga::ns_directory
implements saga::attribute

// from ns::directory saga::ns_entry
// from ns_entry saga::object
// from ns_entry saga::async
// from object saga::error_handler

{
enum flags
{
None = 0, // same as in name_space::flags
Overwrite = 1, // same as in name_space::flags
Recursive = 2, // same as in name_space::flags
Dereference = 4, // same as in name_space::flags
Create = 8, // same as in name_space::flags
Excl = 16, // same as in name_space::flags
Lock = 32, // same as in name_space::flags
CreateParents = 64, // same as in name_space::flags
Truncate = 128,
Append = 256,
Read = 512,
Write = 1024,
ReadWrite = 2048,
Binary = 4096

}

saga-rg@ogf.org 7

GWD-R.96 SAGA CPR API November 9, 2007

// open flags default to Binary, Truncate,
// CreateParents and Lock for open on cpr_entry.

// find checkpoints based on name and meta data
find (in string name_pattern,

in array<string> meta_pattern = (),
in int flags = None,
in string spec = "",
out array<string> urls);

}

class cpr_entry : extends saga::ns_entry
implements saga::attribute

// from ns_entry saga::object
// from ns_entry saga::async
// from object saga::error_handler

{
get_parent (in int generations = 1,

out string url); // cpr-entry url
get_file (in int num = 0,

out string url); // file/lfile url
open_file (in int num = 0,

out file file); // saga::file

// Attributes:
// time
// nfiles
// mode (full, inc 1, inc 2)
// parent (url for cpr-entry)
// childs (array of cpr-entry urls)

}
}

2.3 Specification Details

saga-rg@ogf.org 8

GWD-R.96 Intellectual Property Issues November 9, 2007

3 Intellectual Property Issues

3.1 Contributors

This document is the result of the joint efforts of several contributors. The au-
thors listed here and on the title page are those committed to taking permanent
stewardship for this document. They can be contacted in the future for inquiries
about this document.

Andre Merzky
andre@merzky.net
Vrije Universiteit
Dept. of Computer Science
De Boelelaan 1083
1081HV Amsterdam
The Netherlands

The initial version of the presented SAGA API was drafted by members of the
SAGA Research Group. Members of thst group did not necessarily contribute
text to the document, but did contribute to its current state. Additional to the
authors listed above, we acknowledge the contribution of the following people,
in alphabetical order:

Andrei Hutanu (LSU), Hartmut Kaiser (LSU), Pascal Kleijer (NEC), Thilo
Kielmann (VU), Shantenu Jha (LSU).

3.2 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which
any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover tech-
nology that may be required to practice this recommendation. Please address
the information to the OGF Executive Director.

saga-rg@ogf.org 9

GWD-R.96 Intellectual Property Issues November 9, 2007

3.3 Disclaimer

This document and the information contained herein is provided on an ”As
Is” basis and the OGF disclaims all warranties, express or implied, including
but not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

3.4 Full Copyright Notice

Copyright (C) Open Grid Forum (2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the OGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the OGF Document process must
be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

saga-rg@ogf.org 10

GWD-R.96 Intellectual Property Issues November 9, 2007

References

[1] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, A. Merzky, J. Shalf,
and C. Smith. A Simple API for Grid Applications (SAGA). Grid Forum
Document GFD.xx, 2007. Global Grid Forum.

saga-rg@ogf.org 11

	Introduction
	Notational Conventions
	Security Considerations

	SAGA CPR API
	Introduction
	Specification
	Specification Details

	Intellectual Property Issues
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice

	References

