
Paul Stodghill
December 8, 2003

GridCPR
Request for Comments: GWD-XXX-00x-1

Obsoletes: number
Category: informational

1

Use Cases for Grid Checkpoint and Recovery2

Status of This Memo3

This memo provides information to the Grid community regarding use case scenarios for Grid Checkpointing and4

Recovery. It does not define any standards or technical recommendations. Distribution is unlimited. This is a DRAFT5

document and continues to be revised.6

Abstract7

This document describes a number of use cases or scenarios to be addressed by the Grid Checkpoint and Recovery8

Working Group (GridCPR WG). The scenarios are also used to determine a set of requirements for these standards.9

Full Copyright Notice10

Copyright c© Global Grid Forum (2003). All Rights Reserved.11

This document and translations of it may be copied and furnished to others, and derivative works that comment on12

or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or13

in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all14

such copies and derivative works. However, this document itself may not be modified in any way, such as by removing15

the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing16

Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be17

followed, or as required to translate it into languages other than English.18

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or19

assigns.20

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID21

FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY22

WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR23

ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."24

Intellectual Property Statement25

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might be26

claimed to pertain to the implementation or use of the technology described in this document or the extent to which27

any license under such rights might or might not be available; neither does it represent that it has made any effort28

to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses29

to be made available, or the result of an attempt made to obtain a general license or permission for the use of such30

proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.31

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other32

proprietary rights which may cover technology that may be required to practice this recommendation. Please address33

the information to the GGF Executive Director.34

stodghil@cs.cornell.edu
GWD-XXX-00x-1

GIS-WG
Use Cases for Grid Checkpoint and Recovery

Page: 2
December 8, 2003

Contents35

1 Introduction 236

2 Fault-Tolerance 237

2.1 Introduction . 238

2.2 Terminology . 339

2.3 Checkpointing . 340

2.4 Failure Processing . 341

2.5 Recovery . 442

2.6 Example systems . 443

3 Process Migration 444

4 Debugging 545

5 Functional Requirements for GridCPR 546

6 Security Considerations 647

7 Performance Considerations 648

8 Editor Information 649

1 Introduction50

One of the goals of the Grid Checkpointing and Recovery Working Group (GridCPR WG) is to,51

define a user-level API and associated layer of services that will permit checkpointed jobs to be recovered52

and continued on the same or on remote Grid resources. [22]53

In order to understand the requirements that these API and services must meet, it is necessary to understand the54

situations in which they will be used.55

The purpose of this document is to enumerate usage scenarios that the GridCPR WG have decided must be ad-56

dressed by its specifications. These scenarios will be used to derive a set of requirements for the GridCPR API and57

services.58

2 Fault-Tolerance59

2.1 Introduction60

One of the most common reasons for using checkpointing and recovery is to provide some amount of fault-tolerance61

or failure recovery to an application.62

There are two primary customers in this scenario, the system provider and the application user. Thesystem provider63

is the individual or institution that is providing a computational resource (e.g., workstation, cluster, supercomputer)64

for other parties to use. Theapplication useris the party that is interested in using this resource to run an application.65

Suppose that some sort of quality of service (QoS) agreement has reached between the two parties before the66

application user submits the application for execution. Suppose further that this agreement requires that the application67

user receive a refund (either complete or partial) in the event that the computational resource fails during the application68

execution.69

2

stodghil@cs.cornell.edu
GWD-XXX-00x-1

GIS-WG
Use Cases for Grid Checkpoint and Recovery

Page: 3
December 8, 2003

2.2 Terminology70

Before proceeding further, it is necessary to describe thefault modelthat we wish this scenario to address. First, we71

will assume that only hardware failures are addressed by this scenario. In particular, we will not attempt to detect or72

handle application bugs or hacker attacks.73

Second, we will assume that these failures can be modeled asfail-stopfailures [18]1. We do not consider the more74

general class of Byzantine failures2.75

Third, we will assume that, once any part of the computational resource has failed, it is impossible for the appli-76

cation to continue execution without initiating some global form of recovery. That is, we do not consider scenarios77

where the application continues executing on fewer processor nodes3.78

Instead of enumerating a single or small set of scenarios, we will consider a class of fault-tolerance scenarios. The79

basic structure of these scenarios is as follows,80

Checkpointing Periodically while the application is running, the state of the application is saved to stable storage.81

Failure Processing In the event of failure, the application will be resubmitted to a computational resource for further82

execution.83

Recovery Upon re-execution, the state of the application is restored from the stable storage, and the application84

resumes execution.85

We will explain each of these dimensions in turn.86

2.3 Checkpointing87

There are a number of different techniques that can be used to save an application state to stable. For sequential88

applications, there are basically two approaches. In the case ofSystem-Level Checkpointing (SLC), the applications89

memory image is captured by some low-level mechanism (e.g., an operating system service) [25, 1, 17]. In the case90

of Application-Level Checkpointing (ALC), the state-saving is explicitly part of the application [7]. For instance, the91

application source code may contain functions to save critical program variables and structures.92

Regardless of whether an SLC or ALC approach is used, the state saving functionality can be manually added the93

application by the application programmers, or can be added automatically using either compiler-based [4], library-94

based [19], or operating system-based [1] approaches.95

In parallel applications, it is necessary to obtain a consistent global snapshot of the each processor and the state96

that is shared between them (e.g., messages in flight, shared global memory). For data-parallel applications, very97

often, it is possible to save all of the application state with respect to a global or application point of view [21]. For98

other styles of parallelism (i.e., SPMD, MIMD), more complicated protocols may be required in order to ensure that a99

correct snapshot is saved. See [8] for a survey of these techniques.100

MPICH-GF [15] is a version of MPICH that provides transparent SLC and a number of protocols for handling the101

state of the MPI library. TheC3 provides a layer between the application and the native MPI that provides similar102

functionality for ALC [3, 5].103

2.4 Failure Processing104

The first requirement for processing a failure is to recognize that a failure has occurred. Very often, either the appli-105

cation user or system provider can manually determine when a failure has occurred by monitoring the computational106

resource. There are a number of heartbeat mechanisms [11, 10, 6] that have been proposed for detecting fail-stop107

failures automatically and providing notification services.108

Once a failure has been detected, the application must be resubmitted to a computation resource. For this scenario,109

we will assume that the application is resubmitted to the same (albiet fixed) computational resource. Issues involved110

with recovering on a different computation resource are discussed in Section 3.111

1Certain non-application software failures, such as operating system failures, may appear and be treated as hardware failures using this model.
2Certain hardware failures, such as transient network failures or memory corruption, may not cause any processor to fail and stop. However, as

long as these failures can be detected, they can handled by causing the processor to shutdown.
3It may be possible for the application toresumeexecution on fewer nodes.

3

stodghil@cs.cornell.edu
GWD-XXX-00x-1

GIS-WG
Use Cases for Grid Checkpoint and Recovery

Page: 4
December 8, 2003

Application resubmission can be done manually, either by the application user or system-provider, or automatically112

by some external services, such as a job manager.113

2.5 Recovery114

Once the application has started executing again after resubmission, its state must be restored to that saved during the115

Checkpointing phase. The details of this are dependent upon how the checkpoint was taken in the first place (e.g, SLC116

or ALC, sequential or parallel). However, one requirement of these approaches is that the state that was saved during117

the Checkpointing phase must be available during the Recovery phase.118

2.6 Example systems119

The checkpoint system for the Pittsburgh Supercomputer Center’s Terascale Computing System [23] allows for the120

automated recovery of jobs following both machine failures and scheduled maintenance periods. As an added feature,121

this system allows that any time lost by the user process because of machine failure between the time of the failure122

and the time of the last checkpoint can be automatically credited back to their allocation.123

Checkpointing in the European DataGrid [9] is used to provide some form of fault-tolerance to applications, which124

is particularly important for long-running applications, such as those in High Energy Physics. In this system, the125

application developer is responsible for determining the application state that must be saved and restored. The system126

is responsible for noticing failures and automatically resubmitting jobs for further execution.127

MPICH-GF [15] supports user-transparent fault tolerance of MPI applications running within a homogeneous128

computing environment. MPICH-GF is provided as a library that is linked with the unmodified application code. The129

system provides checkpointing and message logging of the application and a job management system that monitors130

the application, periodically sends checkpoint signals to the application, and restart the application if a failure occurs.131

3 Process Migration132

There are situations where it is necessary to migrate a running application off of a computational resource. This can133

be because, an application is nearing the end of its batch allocation, an application with higher priority is preempting134

the use of the resource, or because a more appropriate resource has been found to execute the application. In any case,135

the application user would like to save the current state of the application in order to resume execution at some point136

in the future on the same or different computational resource.137

In this scenario, unlike the Fault-Tolerance scenario described in Section 2, the application needs to be check-138

pointed only once4.139

Another difference from the Fault-Tolerance scenario is that the application may be resumed on a different machine140

than its initial execution. This new machine may have a different number of processing nodes and a different processor141

architecture. “Portable” checkpoints can be generated using over-decomposition and by using architecture independent142

encoding methods (e.g., XDR [24] and HDF5 [12]).143

Over-decompositionis a technique whereby an application divides its work into more units than there are physical144

processors. That is, if an application is run onP processors, than instead of dividing its work intoP units, it may145

divide it intocP , wherec is a factor greater than 1. While this approach can introduce some amount of overhead to an146

application’s execution, it does provide flexibility in how work units are assigned to processors. For example, if the147

application is restarted onQ processors, then work units can be repartitioned so that each processor is assignedcP/Q148

units.149

The ways of implementing checkpointing and resumption for process migration are similar to those discussed in150

Section 2.151

Condor [17] provides transparent migration of sequential processes in a homogeneous computing environment.152

Dome [2] is an example of a application framework that enables heterogeneous checkpointing and process migration153

via over-decomposition. AMPI [14] is a runtime system that enables an application to automatically migrate between154

machines with a different number of processing nodes. PORCH [20] is an example of a compiler system that enables an155

4This assumes that the application has sufficient time to save its state before it is terminated. If this is not the case, then preemption can be
treated as a failure as in Section 2.

4

stodghil@cs.cornell.edu
GWD-XXX-00x-1

GIS-WG
Use Cases for Grid Checkpoint and Recovery

Page: 5
December 8, 2003

application to automatically migrate between machines with different architectures. All of these systems are potential156

customers of the API’s by the GridCPR WG.157

4 Debugging158

Checkpointing and recovery can be used for debugging application programs. One example of how this can be done159

is with replay debugger[26], which enable the developer to run an application apparently in reverse. This is done by160

periodically checkpointing the application. When the developer wishes to run the application in reverse, the application161

is restored to the most recent checkpoint and then allowed to run forward until it reaches the relevant breakpoint.162

Another example of how checkpointing can be used in debugging can be found in systems for debugging parallel163

programs. In this case, a sequential version of the application is run and checkpoints are taken at certain “breakpoints”164

in the application. Then, a parallel version of the application is run until the computation diverges from the sequential165

execution. The parallel application can then be run in reverse in order to isolate where the bug occurred.166

An example of a debugging system that uses checkpointing is the O’Caml debugger [16]. Checkpointing is also167

being added to the P2D2 debugging system [13].168

5 Functional Requirements for GridCPR169

A Grid Checkpoint and Recovery system will consist of a number of services that provide the functionality. These170

services will be enumerated and described in a future architecture document. However, in order to build portable171

applications and tools that use these services a number of features of these systems must be standardized.172

In this section we identify the requirements that are imposed by the preceding scenarios.173

Checkpoint Storage A necessary requirement of this scenario is a means to create, write, read and destroy check-174

points on stable storage. This ability must be provided in the form of an API so that the application programmer can175

exploit it directly (manual ALC). This API may also be used by automatic checkpointing tools (automatic ALC and176

SLC). This API must enable each of the various forms parallel checkpointing (data-parallel, uncoordinated, block and177

non-blocking coordinated).178

The implementation of this API must provide certain QoS guarantees to the application user and system provider.179

For instance, the system provider should be able to specify that checkpoint files are stored on machines that are not part180

of the computation resource. The application user should be able to query the system to determine what guarantees181

are in place.182

If an application is so designed, it must be able to resume on a machine that is different, both in terms of number183

of processors and architecture, than the machine on which the checkpoint files were created. This means that it must184

be possible to transport checkpoint files between these machines.185

Non-requirement:The API need not define a particular encoding of the data in the checkpoint files. In the case186

of heterogeneous checkpointing, the API is not responsible for generating “portable” checkpointing files. That is the187

responsibility of the application or checkpointing library.188

Non-requirement:The API does not have to provide for mechanisms for initiating checkpoints or for specifying189

how the checkpoints should be taken. The details of the checkpointing process (ALC vs. SLC, etc.) are left to the190

application or to other automatic tools.191

Checkpoint Meta-data It must be possible to annotate checkpoint files with meta-data. For instance, it must be192

possible to examine stable storage and determine which set of files constitute a complete snapshot of the application.193

Also, certain non-blocking coordinated checkpoint protocols for parallel applications require that a set of checkpoint194

files first be created and then separately be marked as “complete” once the protocol terminates.195

Failure Detection Some standardized API should be defined for failure detection and notification. This is not say196

that Failure Detection is a requirement of a GridCPR-compliant implementation. Rather, it is to the GridCPR WG197

should provide a standard API that developers may choose to implement.198

5

stodghil@cs.cornell.edu
GWD-XXX-00x-1

GIS-WG
Use Cases for Grid Checkpoint and Recovery

Page: 6
December 8, 2003

This API should provide mechanisms for receiving notifications when failures are detected, and for allowing the199

application to notify the service in the event that it detects a failure. The notification system should differentiate200

between system detected failures and application initiated failures.201

Other requirements fixme: Should we say something about requirements for202

• job scheduling?203

• checkpoint transport?204

6 Security Considerations205

Authentication, Authorization, and Accounting (AAA) must be provided for the application state that is saved to stable206

storage.207

The application user must be prevented from initiating failures for their own advantage (e.g., in order to obtain208

refunds for failures).209

7 Performance Considerations210

Systems that implement the API’s described above should impose as small an overhead on the application as possible.211

They should also endeavor to provide good scalability.212

An implementation that uses the Checkpoint Storage API should only observe an overhead from the system when213

it calls the functions for manipulating checkpoint files. For instance, the Checkpoint Storage system should not214

significantly slow down an application that never takes a checkpoint.215

8 Editor Information216

Paul Stodghill, Department of Computer Science,217

Upson Hall, Cornell University, Ithaca, NY, 14853, USA218

Phone: 607-254-8838 Email: stodghil@cs.cornell.edu219

Contributers220

We wish to thank the following for contributing use cases and text for this document,221

• Robert Hood, NASA222

• Thilo Kielmann, Vrije Universiteit223

• Massimo Sgaravatto, INFN Padova224

• Paul Stodghill, Cornell University225

• Nathan Stone, Pittsburgh Supercomputing Center226

• Heon Y. Yeom, Seoul National University227

Acknowledgments228

This material is based upon work supported by the National Science Foundation under Grant No. 0085969. Any229

opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do230

not necessarily reflect the views of the National Science Foundation.231

6

mailto:stodghil@cs.cornell.edu

stodghil@cs.cornell.edu
GWD-XXX-00x-1

GIS-WG
Use Cases for Grid Checkpoint and Recovery

Page: 7
December 8, 2003

References232

[1] A. Barak and O. La’adan. The MOSIX multicomputer operating system for high performance cluster computing.233

Journal of Future Generation Computer Systems, 13(4-5):361–372, March 1998.234

[2] Adam Beguelin, Erik Seligman, and Peter Stephan. Application level fault tolerance in heterogeneous networks235

of workstations.Journal of Parallel and Distributed Computing, 43(2):147–155, 1997.236

[3] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. Automated application-level check-237

pointing of MPI programs. InACM Symposium on Principles and Practice of Parallel Programming (PPoPP238

2003), 2002.239

[4] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. C3: A system for automating240

application-level checkpointing of MPI programs. InThe 16th International Workshop on Languages and Com-241

pilers for Parallel Computers (LCPC’03), October 2003.242

[5] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. Collective operations in an application-243

level fault tolerant MPI system. InInternational Conference on Supercomputing (ICS) 2003, San Francisco, CA,244

June 23–26 2003.245

[6] The DataGrid Project. Gdmp heartbeat monitor. http://project-gdmp.web.cern.ch/project-gdmp/gdmp_hb/.246

[7] G. Deconinck, J. Vounckx, R. Lauwereins, and J. Peperstraete. A user-triggered checkpointing library for247

computation-intensive applications, 1995.248

[8] M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson. A survey of rollback-recovery protocols in message249

passing systems. Technical Report CMU-CS-96-181, School of Computer Science, Carnegie Mellon University,250

Pittsburgh, PA, USA, October 1996.251

[9] Alessio Gianelle, Rosario Peluso, and Massimo Sgaravatto. Datagrid: Job partitioning and checkpointing.252

https://edms.cern.ch/document/347730, June 3 2002.253

[10] The Globus Project. The globus heartbeat monitor specification v1.0. http://www-254

fp.globus.org/hbm/heartbeat_spec.html.255

[11] I. Gupta, T. Chandra, and G. Goldszmidt. On scalable and efficient distributed failure detectors. InProc. 20th256

Annual ACM Symp. on Principles of Distributed Computing, pages 170–179, 2001.257

[12] Hdf5 - a new generation of hdf. http://hdf.ncsa.uiuc.edu/HDF5/.258

[13] Robert Hood. P2d2: A portable distributed debugger. http://www.nas.nasa.gov/Groups/Tools/Projects/P2D2/.259

[14] Chao Huang, Orion Lawlor, and L. V. Kale. Adaptive MPI. InLanguages and Compilers for Parallel Computers260

(LCPC), 2003.261

[15] Sangbum Kim, Namyoon Woo, Heon Y. Yeom, Taesoon Park, and Hyoungwoo Park. Design and implementation262

of dynamic process management for grid-enabled MPICH. InProceedings of the 10th European PVM/MPI263

Users’ Group Conference, Venice, Italy, September 2003.264

[16] Xavier Leroy. Re: [Caml-list] replay debugger. http://caml.inria.fr/archives/200110/msg00033.html, October 4265

2001.266

[17] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint and migration of UNIX processes in the267

Condor distributed processing system. Technical Report 1346, University of Wisconsin-Madison, 1997.268

[18] Nancy Lynch.Distributed Algorithms. Morgan Kaufmann, San Francisco, California, first edition, 1996.269

[19] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: Transparent checkpointing under UNIX.270

Technical Report UT-CS-94-242, Dept. of Computer Science, University of Tennessee, 1994.271

7

http://project-gdmp.web.cern.ch/project-gdmp/gdmp_hb/
https://edms.cern.ch/document/347730
http://www-fp.globus.org/hbm/heartbeat_spec.html
http://www-fp.globus.org/hbm/heartbeat_spec.html
http://www-fp.globus.org/hbm/heartbeat_spec.html
http://hdf.ncsa.uiuc.edu/HDF5/
http://www.nas.nasa.gov/Groups/Tools/Projects/P2D2/
http://caml.inria.fr/archives/200110/msg00033.html

stodghil@cs.cornell.edu
GWD-XXX-00x-1

GIS-WG
Use Cases for Grid Checkpoint and Recovery

Page: 8
December 8, 2003

[20] Balkrishna Ramkumar and Volker Strumpen. Portable checkpointing for heterogenous architectures. InSympo-272

sium on Fault-Tolerant Computing, pages 58–67, 1997.273

[21] C. Wang S. Flynn Hummel, I. Banicescu and J. Wein. Load balancing and data locality via fractiling: an274

experimental study. In Boleslaw K. Szymanski and Balaram Sinharoy, editors,Languages, Compilers and Run-275

Time Systems for Scalable Computers, chapter 7, pages 85–98. Kluwer Academic Publishers, Boston, MA, 1996.276

[22] Derek Simmel, Thilo Kielmann, and Nathan Stone. Draft charter v.1.1, Grid Checkpoint Recovery277

Working Group (GridCPR). Technical report, Global Grid Forum, February 20 2003. Available at278

http://forge.gridforum.org/projects/gridcpr-wg/document/Charter_Version_1.1/en/1.279

[23] Nathan Stone, John Kochmar, Raghurama Reddy, J. Ray Scott, Jason Sommerfield, and Chad Vizino.280

A checkpoint and recovery system for the pittsburgh supercomputing center terascale computing system.281

http://www.psc.edu/publications/tech_reports/chkpt_rcvry/checkpoint-recovery-1.0.html, December 3 2003.282

[24] Sun Microsystems, Inc. RFC 1014 - XDR: External data representation standard. Published by The Internet283

Engineering Task Force. Available at http://www.ietf.org/rfc/rfc1014.txt.284

[25] Yuval Tamir and Carlo H. Sequin. Error recovery in multicomputers using global checkpoints. In13th Interna-285

tional Conference on Parallel Processing, pages 32–41, Bellaire, MI, August 1984.286

[26] Andrew Tolmach.Debugging Standard ML. PhD thesis, Princeton University, October 1992.287

8

http://forge.gridforum.org/projects/gridcpr-wg/document/Charter_Version_1.1/en/1
http://www.psc.edu/publications/tech_reports/chkpt_rcvry/checkpoint-recovery-1.0.html
http://www.ietf.org/rfc/rfc1014.txt

	Introduction
	Fault-Tolerance
	Introduction
	Terminology
	Checkpointing
	Failure Processing
	Recovery
	Example systems

	Process Migration
	Debugging
	Functional Requirements for GridCPR
	Security Considerations
	Performance Considerations
	Editor Information

