
Paul Stodghill
January 11, 2004

GridCPR
Request for Comments: GWD-XXX-00x-2

Obsoletes: number
Category: informational

1

Use Cases for Grid Checkpoint and Recovery2

Status of This Memo3

This memo provides information to the Grid community regarding use case scenarios for Grid Checkpointing and4

Recovery. It does not define any standards or technical recommendations. Distribution is unlimited. This is a DRAFT5

document and continues to be revised.6

Abstract7

This document describes use cases to be addressed by the Grid Checkpoint and Recovery Working Group (GridCPR8

WG). The scenarios are also used to determine a set of requirements for these standards.9

Full Copyright Notice10

Copyright c© Global Grid Forum (2003). All Rights Reserved.11

This document and translations of it may be copied and furnished to others, and derivative works that comment on12

or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or13

in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all14

such copies and derivative works. However, this document itself may not be modified in any way, such as by removing15

the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing16

Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be17

followed, or as required to translate it into languages other than English.18

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or19

assigns.20

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID21

FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY22

WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR23

ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."24

Intellectual Property Statement25

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might be26

claimed to pertain to the implementation or use of the technology described in this document or the extent to which27

any license under such rights might or might not be available; neither does it represent that it has made any effort28

to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses29

to be made available, or the result of an attempt made to obtain a general license or permission for the use of such30

proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.31

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other32

proprietary rights which may cover technology that may be required to practice this recommendation. Please address33

the information to the GGF Executive Director.34

stodghil@cs.cornell.edu
GWD-XXX-00x-2

GIS-WG
Use Cases for Grid Checkpoint and Recovery

Page: 2
January 11, 2004

Contents35

1 Introduction 236

2 Terminology 237

3 Fault-Tolerance 338

3.1 Introduction . 339

3.2 Terminology . 340

3.3 Checkpointing . 341

3.4 Failure Processing . 442

3.5 Recovery . 443

3.6 Example systems . 444

4 Process Migration 445

5 Debugging 546

6 Parametric Applications 547

7 Functional Requirements for GridCPR 548

8 Security Considerations 749

9 Performance Considerations 750

10 Editor Information 851

1 Introduction52

One of the goals of the Grid Checkpointing and Recovery Working Group (GridCPR WG) is to,53

define a user-level API and associated layer of services that will permit checkpointed jobs to be recovered54

and continued on the same or on remote Grid resources. [23]55

In order to understand the requirements that these API and services must meet, it is necessary to understand the56

situations in which they will be used.57

The purpose of this document is to enumerate usage scenarios that the GridCPR WG have decided must be ad-58

dressed by its specifications. These scenarios will be used to derive a set of requirements for the GridCPR API and59

services.60

Note that the scenarios described below are not intended to partition applications. That is, a single application61

may use checkpoint and restart in a variety of different ways For example, in the RealityGrid [21] project there are62

applications that use checkpoint and restart for fault-tolerance (Section 3), process migration (Section 4) and debugging63

(Section 5) simultaneously.64

2 Terminology65

fixme: Terminology: what is a job?66

Thilo’s comment,67

68

we need to identify/agree upon a task model. The document talks about69

sequential and (MPI-like) parallel applications. However, I remember70

>From our meeting at GGF7/8 (the one with the flip charts) that people71

2

stodghil@cs.cornell.edu
GWD-XXX-00x-2

GIS-WG
Use Cases for Grid Checkpoint and Recovery

Page: 3
January 11, 2004

were also dealing with "workflow like" jobs that consist of multiple72

sequential and parallel programs, together forming an application.73

Comments?74

3 Fault-Tolerance75

3.1 Introduction76

One of the most common reasons for using checkpointing and recovery is to provide some amount of fault-tolerance77

or failure recovery to an application.78

There are two primary customers in this scenario, the system provider and the application user. The system provider79

is the individual or institution that is providing a computational resource (e.g., workstation, cluster, supercomputer)80

for other parties to use. The application user is the party that is interested in using this resource to run an application.81

3.2 Terminology82

Before proceeding further, it is necessary to describe the fault model that we wish this scenario to address. First, we83

will assume that only hardware failures are addressed by this scenario. In particular, we will not attempt to detect or84

handle application bugs or hacker attacks.85

Second, we will assume that these failures can be modeled as fail-stop failures [18]1. We do not consider the more86

general class of Byzantine failures2.87

Third, we will assume that, once any part of the computational resource has failed, it is impossible for the appli-88

cation to continue execution without initiating some global form of recovery. That is, we do not consider scenarios89

where the application continues executing on fewer processor nodes3.90

Instead of enumerating a single or small set of scenarios, we will consider a class of fault-tolerance scenarios. The91

basic structure of these scenarios is as follows,92

Checkpointing Periodically while the application is running, the state of the application is saved to stable storage.93

Failure Processing In the event of failure, the application will be resubmitted to a computational resource for further94

execution.95

Recovery Upon re-execution, the state of the application is restored from the stable storage, and the application96

resumes execution.97

We will explain each of these dimensions in turn.98

3.3 Checkpointing99

There are a number of different techniques that can be used to save an application state to stable storage. For sequential100

applications, there are basically two approaches. In the case of System-Level Checkpointing (SLC), the applications101

memory image is captured by some transparent mechanism (e.g., an operating system service) [26, 1, 17]. In the case102

of Application-Level Checkpointing (ALC), the state-saving is explicitly part of the application [7]. For instance, the103

application source code may contain functions to save critical program variables and structures.104

Regardless of whether an SLC or ALC approach is used, the state saving functionality can be manually added the105

application by the application programmers, or can be added automatically using either compiler-based [4], library-106

based [19], or operating system-based [1] approaches.107

In parallel applications, it is necessary to obtain a consistent global snapshot of the each processor and the state108

that is shared between them (e.g., messages in flight, shared global memory). For data-parallel applications, very109

often, it is possible to save all of the application state with respect to a global or application point of view [22]. For110

1Certain non-application software failures, such as operating system failures, may appear and be treated as hardware failures using this model.
2Certain hardware failures, such as transient network failures or memory corruption, may not cause any processor to fail and stop. However, as

long as these failures can be detected, they can handled by causing the processor to shutdown.
3It may be possible for the application to resume execution on fewer nodes.

3

stodghil@cs.cornell.edu
GWD-XXX-00x-2

GIS-WG
Use Cases for Grid Checkpoint and Recovery

Page: 4
January 11, 2004

other styles of parallelism (i.e., SPMD, MIMD), more complicated protocols may be required in order to ensure that a111

correct snapshot is saved. See [8] for a survey of these techniques.112

MPICH-GF [15] is a version of MPICH that provides transparent SLC and a number of protocols for handling the113

state of the MPI library. The C3 provides a layer between the application and the native MPI that provides similar114

functionality for ALC [3, 5].115

3.4 Failure Processing116

The first requirement for processing a failure is to recognize that a failure has occurred. Very often, either the appli-117

cation user or system provider can manually determine when a failure has occurred by monitoring the computational118

resource. There are a number of heartbeat mechanisms [11, 10, 6] that have been proposed for detecting fail-stop119

failures automatically and providing notification services.120

Once a failure has been detected, the application must be resubmitted to a computation resource. For this scenario,121

we will assume that the application is resubmitted to the same (albiet fixed) computational resource. Issues involved122

with recovering on a different computation resource are discussed in Section 4.123

Application resubmission can be done manually, either by the application user or system-provider, or automatically124

by some external services, such as a job manager.125

3.5 Recovery126

Once the application has started executing again after resubmission, its state must be restored to that saved during the127

Checkpointing phase. The details of this are dependent upon how the checkpoint was taken in the first place (e.g, SLC128

or ALC, sequential or parallel). However, one requirement of these approaches is that the state that was saved during129

the Checkpointing phase must be available during the Recovery phase.130

3.6 Example systems131

The checkpoint system for the Pittsburgh Supercomputer Center’s Terascale Computing System [24] allows for the132

automated recovery of jobs following both machine failures and scheduled maintenance periods. As an added feature,133

this system allows that any time lost by the user process because of machine failure between the time of the failure134

and the time of the last checkpoint can be automatically credited back to their allocation.135

Checkpointing in the European DataGrid [9] is used to provide some form of fault-tolerance to applications, which136

is particularly important for long-running applications, such as those in High Energy Physics. In this system, the137

application developer is responsible for determining the application state that must be saved and restored. The system138

is responsible for noticing failures and automatically resubmitting jobs for further execution.139

MPICH-GF [15] supports user-transparent fault tolerance of MPI applications running within a homogeneous140

computing environment. MPICH-GF is provided as a library that is linked with the unmodified application code. The141

system provides checkpointing and message logging of the application and a job management system that monitors142

the application, periodically sends checkpoint signals to the application, and restart the application if a failure occurs.143

4 Process Migration144

There are situations where it is necessary to migrate a running application off of a computational resource. This can145

be because, an application is nearing the end of its batch allocation, an application with higher priority is preempting146

the use of the resource, or because a more appropriate resource has been found to execute the application. In any case,147

the application user would like to save the current state of the application in order to resume execution at some point148

in the future on the same or different computational resource.149

In this scenario, unlike the Fault-Tolerance scenario described in Section 3, the application needs to be check-150

pointed only once4.151

Another difference from the Fault-Tolerance scenario is that the application may be resumed on a different machine152

than its initial execution. This new machine may have a different number of processing nodes and a different processor153

4This assumes that the application has sufficient time to save its state before it is terminated. If this is not the case, then preemption can be
treated as a failure as in Section 3.

4

stodghil@cs.cornell.edu
GWD-XXX-00x-2

GIS-WG
Use Cases for Grid Checkpoint and Recovery

Page: 5
January 11, 2004

architecture. “Portable” checkpoints can be generated using over-decomposition and by using architecture independent154

encoding methods (e.g., XDR [25] and HDF5 [12]).155

Over-decomposition is a technique whereby an application divides its work into more units than there are physical156

processors. That is, if an application is run on P processors, than instead of dividing its work into P units, it may157

divide it into cP , where c is a factor greater than 1. While this approach can introduce some amount of overhead to an158

application’s execution, it does provide flexibility in how work units are assigned to processors. For example, if the159

application is restarted on Q processors, then work units can be repartitioned so that each processor is assigned cP/Q160

units.161

The ways of implementing checkpointing and resumption for process migration are similar to those discussed in162

Section 3.163

Condor [17] provides transparent migration of sequential processes in a homogeneous computing environment.164

Dome [2] is an example of a application framework that enables heterogeneous checkpointing and process migration165

via over-decomposition. AMPI [14] is a runtime system that enables an application to automatically migrate between166

machines with a different number of processing nodes. PORCH [20] is an example of a compiler system that enables an167

application to automatically migrate between machines with different architectures. All of these systems are potential168

customers of the API’s by the GridCPR WG.169

5 Debugging170

Checkpointing and recovery can be used for debugging application programs. One example of how this can be done171

is with replay debugger [27], which enable the developer to run an application apparently in reverse. This is done by172

periodically checkpointing the application. When the developer wishes to run the application in reverse, the application173

is restored to the most recent checkpoint and then allowed to run forward until it reaches the relevant breakpoint.174

Another example of how checkpointing can be used in debugging can be found in systems for debugging parallel175

programs. In this case, a sequential version of the application is run and checkpoints are taken at certain “breakpoints”176

in the application. Then, a parallel version of the application is run until the computation diverges from the sequential177

execution. The parallel application can then be run in reverse in order to isolate where the bug occurred.178

An example of a debugging system that uses checkpointing is the O’Caml debugger [16]. Checkpointing is also179

being added to the P2D2 debugging system [13].180

6 Parametric Applications181

fixme: missing use case182

Thilo’s comemnt,183

184

I think one compelling use case is missing that had been discussed at185

multiple GGF meetings:186

Parameter studies that create a tree of checkpoints for exploring187

alternatives from a given checkpoint.188

7 Functional Requirements for GridCPR189

A Grid Checkpoint and Recovery system will consist of a number of services that provide the functionality. These190

services will be enumerated and described in a future architecture document. However, in order to build portable191

applications and tools that use these services a number of features of these systems must be standardized.192

In this section we identify the requirements that are imposed by the preceding scenarios.193

5

stodghil@cs.cornell.edu
GWD-XXX-00x-2

GIS-WG
Use Cases for Grid Checkpoint and Recovery

Page: 6
January 11, 2004

Checkpoint Storage A necessary requirement of this scenario is a means to create, write, read and destroy check-194

points on stable storage. This ability must be provided in the form of an API so that the application programmer can195

exploit it directly (manual ALC). This API may also be used by automatic checkpointing tools (automatic ALC and196

SLC). This API must enable each of the various forms parallel checkpointing (data-parallel, uncoordinated, block and197

non-blocking coordinated).198

An implementation of this API must provide certain QoS guarantees to the application user and system provider.199

For instance, the system provider should be able to specify that checkpoint files are stored on machines that are not part200

of the computation resource. The application user should be able to query the system to determine what guarantees201

are in place.202

An implementation of this API must provide for the fact that failure can occur during the checkpointing process. A203

common technique used in ALC-based solutions to the fault-tolerance problem is to cycle through two (rarely more)204

sets of checkpoint files so that if a failure occur while a checkpoint is being taken, recovery from the earlier checkpoint205

is still possible.206

If an application is so designed, it must be able to resume on a machine that is different, both in terms of number207

of processors and architecture, than the machine on which the checkpoint files were created. This means that it must208

be possible to transport checkpoint files between these machines.209

Since multiple checkpoints may be present at recovery, the user must have the option of specifying when check-210

point to recover from.211

Non-requirement: The API need not define a particular encoding of the data in the checkpoint files. In the case212

of heterogeneous checkpointing, the API is not responsible for generating “portable” checkpointing files. That is the213

responsibility of the application or checkpointing library.214

Non-requirement: The API does not have to provide for mechanisms for initiating checkpoints or for specifying215

how the checkpoints should be taken. The details of the checkpointing process (ALC vs. SLC, etc.) are left to the216

application or to other automatic tools.217

Checkpoint Meta-data It must be possible to annotate checkpoint files with meta-data. For instance, it must be218

possible to examine stable storage and determine which set of files constitute a complete snapshot of the application.219

Also, certain non-blocking coordinated checkpoint protocols for parallel applications require that a set of checkpoint220

files first be created and then separately be marked as “complete” once the protocol terminates.221

Failure Detection Some standardized API should be defined for failure detection and notification. This is not say222

that Failure Detection is a requirement of a GridCPR-compliant implementation. Rather, it is to the GridCPR WG223

should provide a standard API that developers may choose to implement.224

This API should provide mechanisms for receiving notifications when failures are detected, and for allowing the225

application to notify the service in the event that it detects a failure. The notification system should differentiate226

between system detected failures and application initiated failures.227

Non-requirement: Although these API’s are intended to support job migration, they do not define API’s or services228

for job migration. In other words, a Grid job migration system might use the Checkpoint and Recovery API’s to229

capture application state, but would have to provide additional API’s and services for initiation, resource management,230

security, etc.231

Other requirements fixme: Should we say something about requirements for232

• job scheduling?233

• checkpoint transport?234

Nathan’s comments235

* storage or "I/O" daemons -- to serve up CPR storage resources236

* file transfer services (this is distinct in PSC’s implementation, but237

might be as simple as UNIX "cp" elsewhere)238

* checkpoint state manatement (like a DBMS)239

6

stodghil@cs.cornell.edu
GWD-XXX-00x-2

GIS-WG
Use Cases for Grid Checkpoint and Recovery

Page: 7
January 11, 2004

Stephen’s comments240

241

I think we need to avoid getting entangled in job scheduling242

and checkpoint transport as far as possible.243

244

There’s a couple of areas where job scheduling and checkpoint245

transport will crop up.246

247

In the PSC system, there’s some interesting interactions as248

they (presumably) need to determine which jobs were affected249

by a failure, and which checkpoint(s) the affected jobs may250

have created. I don’t know how they do (or propose to do)251

this, but I hope it’s transparent to the API used in the252

self-checkpointing application. However, it probably implies253

some requirements on the GridCPR services, and I would expect254

to see some site-specific information (which might include255

job-id) to be queryable through the GridCPR services.256

257

The useful-looking GridCPR_imminent() function in Nathan’s258

document could in certain implementations involve an259

interaction with the job-scheduling system, but I don’t think260

that it necessarily has to do so.261

262

Checkpoint transport is a tricky one. Clearly, job migration263

in the general case must involve checkpoint transport of some264

kind. Even in the case where a job is restarted on the same265

cluster, it’s not necessarily the case that any checkpoint files266

left by the previous incarnation of the job are accessible on the267

node where the job is restarted, so checkpoint transport may be268

required here too.269

270

Then there’s questions on when the transfer occurs. I think271

this should usually happen before the restarted application272

actually starts (having a large parallel application block273

on the transfer of very large datasets could be extremely]274

wasteful of resources).275

276

Should this group attempt to define checkpoint transport services?277

8 Security Considerations278

Authentication, Authorization, and Accounting (AAA) must be provided for the application state that is saved to stable279

storage.280

The application user must be prevented from initiating failures for their own advantage (e.g., in order to obtain281

refunds for failures).282

9 Performance Considerations283

Systems that implement the API’s described above should impose as small an overhead on the application as possible.284

They should also endeavor to provide good scalability.285

7

stodghil@cs.cornell.edu
GWD-XXX-00x-2

GIS-WG
Use Cases for Grid Checkpoint and Recovery

Page: 8
January 11, 2004

Performance during the Checkpointing phase is more important than performance during the Recovery phase.286

Systems that implement the API’s described above may, for instance, defer processing time during Checkpointing287

until Recovery.288

An implementation that uses the Checkpoint Storage API should only observe an overhead from the system when289

it calls the functions for manipulating checkpoint files. For instance, the Checkpoint Storage system should not290

significantly slow down an application that never takes a checkpoint.291

10 Editor Information292

Paul Stodghill, Department of Computer Science,293

Upson Hall, Cornell University, Ithaca, NY, 14853, USA294

Phone: 607-254-8838 Email: stodghil@cs.cornell.edu295

Contributers296

We wish to thank the following for contributing use cases and text for this document,297

• Robert Hood, NASA298

• Thilo Kielmann, Vrije Universiteit299

• Massimo Sgaravatto, INFN Padova300

• Paul Stodghill, Cornell University301

• Nathan Stone, Pittsburgh Supercomputing Center302

• Heon Y. Yeom, Seoul National University303

Acknowledgments304

This material is based upon work supported by the National Science Foundation under Grant No. 0085969. Any305

opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do306

not necessarily reflect the views of the National Science Foundation.307

References308

[1] A. Barak and O. La’adan. The MOSIX multicomputer operating system for high performance cluster computing.309

Journal of Future Generation Computer Systems, 13(4-5):361–372, March 1998.310

[2] Adam Beguelin, Erik Seligman, and Peter Stephan. Application level fault tolerance in heterogeneous networks311

of workstations. Journal of Parallel and Distributed Computing, 43(2):147–155, 1997.312

[3] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. Automated application-level check-313

pointing of MPI programs. In ACM Symposium on Principles and Practice of Parallel Programming (PPoPP314

2003), 2002.315

[4] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. C3: A system for automating316

application-level checkpointing of MPI programs. In The 16th International Workshop on Languages and Com-317

pilers for Parallel Computers (LCPC’03), October 2003.318

[5] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. Collective operations in an application-319

level fault tolerant MPI system. In International Conference on Supercomputing (ICS) 2003, San Francisco, CA,320

June 23–26 2003.321

8

mailto:stodghil@cs.cornell.edu

stodghil@cs.cornell.edu
GWD-XXX-00x-2

GIS-WG
Use Cases for Grid Checkpoint and Recovery

Page: 9
January 11, 2004

[6] The DataGrid Project. Gdmp heartbeat monitor. http://project-gdmp.web.cern.ch/project-gdmp/gdmp_hb/.322

[7] G. Deconinck, J. Vounckx, R. Lauwereins, and J. Peperstraete. A user-triggered checkpointing library for323

computation-intensive applications, 1995.324

[8] M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson. A survey of rollback-recovery protocols in message325

passing systems. Technical Report CMU-CS-96-181, School of Computer Science, Carnegie Mellon University,326

Pittsburgh, PA, USA, October 1996.327

[9] Alessio Gianelle, Rosario Peluso, and Massimo Sgaravatto. Datagrid: Job partitioning and checkpointing.328

https://edms.cern.ch/document/347730, June 3 2002.329

[10] The Globus Project. The globus heartbeat monitor specification v1.0.330

http://www-fp.globus.org/hbm/heartbeat_spec.html.331

[11] I. Gupta, T. Chandra, and G. Goldszmidt. On scalable and efficient distributed failure detectors. In Proc. 20th332

Annual ACM Symp. on Principles of Distributed Computing, pages 170–179, 2001.333

[12] Hdf5 - a new generation of hdf. http://hdf.ncsa.uiuc.edu/HDF5/.334

[13] Robert Hood. P2d2: A portable distributed debugger. http://www.nas.nasa.gov/Groups/Tools/Projects/P2D2/.335

[14] Chao Huang, Orion Lawlor, and L. V. Kale. Adaptive MPI. In Languages and Compilers for Parallel Computers336

(LCPC), 2003.337

[15] Sangbum Kim, Namyoon Woo, Heon Y. Yeom, Taesoon Park, and Hyoungwoo Park. Design and implementation338

of dynamic process management for grid-enabled MPICH. In Proceedings of the 10th European PVM/MPI339

Users’ Group Conference, Venice, Italy, September 2003.340

[16] Xavier Leroy. Re: [Caml-list] replay debugger. http://caml.inria.fr/archives/200110/msg00033.html, October 4341

2001.342

[17] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint and migration of UNIX processes in the343

Condor distributed processing system. Technical Report 1346, University of Wisconsin-Madison, 1997.344

[18] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, California, first edition, 1996.345

[19] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: Transparent checkpointing under UNIX.346

Technical Report UT-CS-94-242, Dept. of Computer Science, University of Tennessee, 1994.347

[20] Balkrishna Ramkumar and Volker Strumpen. Portable checkpointing for heterogenous architectures. In Sympo-348

sium on Fault-Tolerant Computing, pages 58–67, 1997.349

[21] The RealityGrid Project. Realitygrid. http://www.realitygrid.org.350

[22] C. Wang S. Flynn Hummel, I. Banicescu and J. Wein. Load balancing and data locality via fractiling: an351

experimental study. In Boleslaw K. Szymanski and Balaram Sinharoy, editors, Languages, Compilers and Run-352

Time Systems for Scalable Computers, chapter 7, pages 85–98. Kluwer Academic Publishers, Boston, MA, 1996.353

[23] Derek Simmel, Thilo Kielmann, and Nathan Stone. Draft charter v.1.1, Grid Checkpoint Recovery354

Working Group (GridCPR). Technical report, Global Grid Forum, February 20 2003. Available at355

http://forge.gridforum.org/projects/gridcpr-wg/document/Charter_Version_1.1/en/1.356

[24] Nathan Stone, John Kochmar, Raghurama Reddy, J. Ray Scott, Jason Sommerfield, and Chad Vizino.357

A checkpoint and recovery system for the pittsburgh supercomputing center terascale computing system.358

http://www.psc.edu/publications/tech_reports/chkpt_rcvry/checkpoint-recovery-1.0.html, December 3 2003.359

[25] Sun Microsystems, Inc. RFC 1014 - XDR: External data representation standard. Published by The Internet360

Engineering Task Force. Available at http://www.ietf.org/rfc/rfc1014.txt.361

9

http://project-gdmp.web.cern.ch/project-gdmp/gdmp_hb/
https://edms.cern.ch/document/347730
http://www-fp.globus.org/hbm/heartbeat_spec.html
http://hdf.ncsa.uiuc.edu/HDF5/
http://www.nas.nasa.gov/Groups/Tools/Projects/P2D2/
http://caml.inria.fr/archives/200110/msg00033.html
http://www.realitygrid.org
http://forge.gridforum.org/projects/gridcpr-wg/document/Charter_Version_1.1/en/1
http://www.psc.edu/publications/tech_reports/chkpt_rcvry/checkpoint-recovery-1.0.html
http://www.ietf.org/rfc/rfc1014.txt

stodghil@cs.cornell.edu
GWD-XXX-00x-2

GIS-WG
Use Cases for Grid Checkpoint and Recovery

Page: 10
January 11, 2004

[26] Yuval Tamir and Carlo H. Sequin. Error recovery in multicomputers using global checkpoints. In 13th Interna-362

tional Conference on Parallel Processing, pages 32–41, Bellaire, MI, August 1984.363

[27] Andrew Tolmach. Debugging Standard ML. PhD thesis, Princeton University, October 1992.364

10

	Introduction
	Terminology
	Fault-Tolerance
	Introduction
	Terminology
	Checkpointing
	Failure Processing
	Recovery
	Example systems

	Process Migration
	Debugging
	Parametric Applications
	Functional Requirements for GridCPR
	Security Considerations
	Performance Considerations
	Editor Information

