
GWD-I Ann Chervenak, USC Information Sciences Institute
Category: Informational Karl Czajkowski, USC Information Sciences Institute

OGSA Data Replication Services Working Group June 4, 2003

annc@isi.edu 1

GGF DOCUMENT SUBMISSION CHECKLIST (include as front page of submission)
 COMPLETED (X) - Date
1. Author name(s), institution(s),
and contact information (X) - June 4, 2003

2. Date (original and, where
applicable, latest revision date) (X) - June 4, 2003

3. Title, table of contents, clearly
numbered sections (X) - June 4, 2003

4. Security Considerations section (X) - June 4, 2003
5. GGF Copyright statement inserted
(See below) (X) - June 4, 2003

6. GGF Intellectual Property
statement inserted. (X) - June 4, 2003

7. Document format (X) - June 4, 2003

GWD-I Ann Chervenak, USC Information Sciences Institute
Category: Informational Karl Czajkowski, USC Information Sciences Institute

OGSA Data Replication Services Working Group June 4, 2003

annc@isi.edu 2

Local Replica Catalog Service Specification (v2)

Status of This Memo

This memo provides information to the Grid community regarding standards for Replica Location
Services. It does not define any standards or technical recommendations. Distribution is
unlimited.

Copyright Notice

Copyright © Global Grid Forum (2003). All Rights Reserved.

Abstract

This document provides a draft grid service specification for a Local Replica Catalog, which is
one component of a Replica Location Service. This specification is being developed within the
OGSA Data Replication Services (OREP) Working Group of the Global Grid Forum (GGF). This
specification will comply with the Grid Services Specification being developed by the Open Grid
Services Infrastructure (OGSI) Working Group of the GGF.

The Local Replica Catalog Service maintains local mappings from logical names to target names
and answers queries about those mappings. In this specification, we describe the Service Data
Elements and Port Types that make up the Local Replica Catalog Service.

We also indicate open questions that need to be resolved by the OREP working group and
indicate the parts of the grid service specification that are likely to change as the RLS evolves to
a fully service-oriented architecture.

Contents

Abstract.. 2
1. Introduction ... 4
2. Membership Management .. 5
3. Subscribing to LRC Soft State Updates ... 6

3.1 NotificationSource PortType: Service Data Descriptions... 6
3.2 The NotificationSource PortType: Operations ... 6

4. The ServiceAdministration PortType .. 7
4.1 ServiceAdministration PortType: Service Data Descriptions .. 7
4.2 ServiceAdministration PortType: Operations and Messages ... 9

4.2.1 ServiceAdministration :: CreateAttribute.. 9
4.2.2 ServiceAdministration :: DeleteAttribute .. 9

5. The MappingsAdministration PortType .. 10
5.1 MappingsAdministration PortType: Service Data Descriptions 10
5.2 MappingsAdministration PortType: Operations and Messages...................................... 10

5.2.1 MappingsAdministration :: AddMapping .. 10
5.2.2 MappingsAdministration :: DeleteMapping .. 10
5.2.3 MappingsAdministration :: AddAttributeValue ... 10
5.2.4 MappingsAdministration :: RemoveAttributeValue .. 11

6. The QueryMappings PortType ... 11
6.1 QueryMappings PortType: Service Data Descriptions and Elements 11

GWD-I Ann Chervenak, USC Information Sciences Institute
Category: Informational Karl Czajkowski, USC Information Sciences Institute

OGSA Data Replication Services Working Group June 4, 2003

annc@isi.edu 3

6.2 QueryMappings PortType: Operations and Messages... 11
6.2.1 QueryMappings :: QueryLogicalNameExists... 11
6.2.2 QueryMappings :: QueryTargetNameExists.. 12
6.2.3 QueryMappings :: GetMappingsWithLogicalName.. 12
6.2.4 QueryMappings :: GetMappingsWithTargetName... 12
6.2.5 QueryMappings :: WildcardMatchLogicalNamePattern... 12
6.2.6 QueryMappings :: WildcardMatchTargetNamePattern.. 12
6.2.7 QueryMappings :: GetAttributeDefinition ... 13
6.2.8 QueryMappings :: GetAttributeValue ... 13
6.2.9 QueryMappings :: SearchAttributesByValue ... 13

7. The GridService PortType .. 14
8. Security Considerations.. 14
Author Information ... 14
Intellectual Property Statement ... 15
Full Copyright Notice ... 15
References .. 15

GWD-I June 4, 2003

annc@isi.edu 4

1. Introduction

In this document, we present an initial draft of a specification for a Local Replica Catalog Service.
This specification is being developed within the OGSA Data Replication Services (OREP)
Working Group of the Global Grid Forum (GGF). This specification will comply with the Grid
Services Specification being developed by the Open Grid Services Infrastructure (OGSI) Working
Group of the GGF.

We expect the LRC draft specification to change substantially from this initial draft. In particular,
we expect that substantial modifications will be necessary to accommodate emerging concepts in
the Open Grid Services Architecture (OGSA) relating to the treatment of datasets as first-class
OGSI-compliant services. A companion document titled “Evolution of the Replica Location
Service Specification to Represent Datasets as Grid Services” [3] presents a series of options or
steps by which the Replica Location Service may evolve to accommodate a more service-
oriented view of datasets, groups of equivalent replicas and indexes. The specification presented
in this document corresponds to Option 1 of [3], which simply creates Grid service wrappers
around the existing Replica Location Service but does not otherwise take advantage of the
representation of datasets as services. Throughout this document, we will make note of changes
that may be necessary in the specification to accommodate a more fully service-oriented Replica
Location Service.

Replica Location Services maintain and provide information about data location. The initial draft
of the Local Replica Catalog (LRC) Service specification is based on the following overall
architecture for providing Replica Location Services (RLS) [1]. The Local Replica Catalog
Service is one RLS component that maintains local mappings from logical names to target names
and answers queries about those mappings. A distributed RLS may also include one or more
Replica Location Index (RLI) Services, which collect mapping information from one or more LRC
services and answer queries about those mappings. The RLI service is not described in this
specification. An RLS may consist of a number of LRC and RLI services, where each RLI service
subscribes to soft state updates from one or more LRC services. The figure below shows one
possible layout of LRCs and RLIs in a distributed RLS.

Local replica catalogs (LRCs) maintain mappings between logical names (LNs) for data items,
specified as URIs, and one or more other target names for these data items (either logical or
physical). In many cases, the LRC will provide a mapping from an LN to one or more physical
locations (URLs) of instances of the data item on storage systems; such physical names can be
used by the client of the LRC to access the data item directly. In other cases, the LRC may

LRC LRC LRC

RLIRLI

RC LRC

Replica Location Indexes

Local Replica Catalogs

GWD-I June 4, 2003

annc@isi.edu 5

provide a mapping from the LN to another layer of logical naming (a URN) for the data item. The
LRC can thus support multiple levels of logical naming.

One example where logical rather than physical target names would be useful is a storage
management system that frequently moves data items for load balancing or archiving purposes;
by registering logical names rather than physical locations as the targets of LRC mappings, the
storage management system need not update LRC mappings when it moves data items. Such a
storage management system would do its own internal mappings from logical target names to
physical storage locations.

[Note: In a more service-oriented architecture [3], the LRC may evolve to contain mappings
between logical names and Grid Service Handles (GSHs) of dataset services. A further evolution
would have sets of equivalent replicas implemented as replicaSet services and replace the logical
names in LRC mappings with the GSHs of the replicaSet services.]

2. Membership Management

A distributed Replica Location Service consists of a number of LRC and RLI services, each of
which are considered members of the RLS. The RLS may respond to changes in membership,
for example, when LRCs and RLIs join the distributed RLS or when they fail. For example, an
RLS might react to membership changes by repartitioning the LRC services among the available
set of RLI services, changing the set of LRCs to which each RLI subscribes.

There are several membership management issues that relate to the LRC service. The LRC
service specification must provide a mechanism for initiating and configuring subscriptions to LRC
soft state updates. The LRC service must also deal with changes to subscription characteristics
and with subscriber failures.

For the first version of this specification, we will take the simplest approach to membership
management. The LRC service will implement the NotificationSource PortType, which is part of
the standard Grid Services Specification. Another service (or an administrator) may use the
subscribe method provided by this PortType to subscribe itself (or another service) to LRC soft
state service data elements. A subscription request causes the creation of a subscription service
instance, which can then be used by clients to manage the lifetime of the subscription. The LRC
service continues sending soft state updates to the subscriber until the subscription lifetime
expires.

Another approach to membership management that may eventually be adopted is to allow a
service (such as an RLI) to subscribe to notifications of LRC locator information. Locator state
informs the subscriber that the LRC service exists. By sending locator information to a
subscriber, the LRC effectively invites that service to initiate a separate subscription to its soft
state update service data elements.

[Note: In a fully service-oriented RLS architecture, RLS index services (LRCs and RLIs) could be
implemented using either OGSA indexing mechanisms or OGSI ServiceGroups [2]. RLS
membership could be managed by constructing an external registry service that maintains
information about the collection of participating RLS index services. This registry service could
include methods that react to changes in RLS membership by redistributing soft state update
subscriptions among RLS index services in the hierarchy. Such a registry service could be
implemented using OGSI ServiceGroups.]

GWD-I June 4, 2003

annc@isi.edu 6

3. Subscribing to LRC Soft State Updates

LRC services currently provide two types of soft state updates. The first type consists of a list of
logical names that are registered in the catalog. The second type of soft state update is a
summary of the contents of the LRC called a Bloom Filter Summary, which is constructed by
performing a series of hash functions on each logical name registered in the LRC. For each
hashed value, the corresponding bits of the bloom filter are set.

As already mentioned, the LRC service allows clients to subscribe to soft state service data
elements by implementing the standard NotificationSource PortType that is described in the Grid
Services Specification. Service data elements of the subscription will indicate whether the
notification will use bloomFilterCompression and the frequency of soft state updates.

3.1 NotificationSource PortType: Service Data Descriptions

The Service Data Descriptions below describe the two types of soft state updates to which a
client may subscribe for notification of state changes: a list of logical names registered in the
LRC or a bloom filter summary of LRC state.

<gsdl:serviceDataDescription
 name=“logicalNames”
 type=“xsd:anyURI”
 minOccurs=“0”
 maxOccurs=“unbounded”
 mutability=“mutable”>
 <wsdl:documentation>

logicalNames is the list of logical names registered in the LRC. Each logical name is a
URI.

 </wsdl:documentation>
</gsdl:serviceDataDescription

<gsdl:serviceDataDescription
 name=“bloomFilterSummary”
 type=“xsd:string”
 minOccurs=“0”
 maxOccurs=“unbounded”
 mutability=“mutable”>
 <wsdl:documentation>

The bloom filter summary of the contents of the LRC is implemented by this Grid Service.
The summary is a bit array, which is currently defined to be a string.

 </wsdl:documentation>
</gsdl:serviceDataDescription

[One open design issue is whether these Service Data Descriptions should be separately defined
(as above), or whether we should take a more polymorphic approach, using a single Service Data
Description to represent LRC state and differentiating the type of soft state update via different
query mechanisms.]

3.2 The NotificationSource PortType: Operations

Operations supported by the standard NotificationSource PortType include Subscribe and
SubscribeByServiceDataName.

The subscription operation should specify the type of soft state subscription, which may be one of
the following:
• LogicalNames

GWD-I June 4, 2003

annc@isi.edu 7

• bloomFilterSummary

[One issue that does not seem to have adequate support in the current Grid Services
Specification is the need for sending partial service data to a subscriber. We are interested in two
types of partial service data updates: we would like to be able to partition the logical file
namespace that is sent to a particular subscriber, for example, sending only those logical names
that match a specified pattern; and we would like to send incremental updates that consist of only
those service data elements that have changed since the previous update. Neither of these types
of updates appears to be possible with the current GSS, which sends only complete service data
updates.]

[Note: In a fully service-oriented design, we would still likely want to implement optional Bloom
Filter Compression to reduce the size of soft state updates among index services in the hierarchy.
If RLS index services are implemented using OGSA index mechanisms, then the service provider
associated with datasets or indexes would be responsible for producing these soft state updates,
including bloom filters. If the RLS index services are implemented as ServiceGroups, we would
need to extend existing ServiceGroup service data and port types to expose soft state updates
and allow subscription.]

4. The ServiceAdministration PortType

The ServiceAdministration PortType provides Service Data Descriptions and methods related to
the configuration of the LRC server.

4.1 ServiceAdministration PortType: Service Data Descriptions

The Service Data Descriptions below describe data items that describe LRC configuration and
dynamic service state that can be queried by the FindServiceData command implemented by the
GridService PortType.

[One open question is how LRC configuration and state information should be aggregated for
FindServiceData queries. Initially, we have grouped together some related LRC configuration
information into complex data type and left others as individual service data elements.]

<xsd: complexType name=“bloomFilterParameters”>
 <xsd:sequence>
 <xsd: element name=“bloomfiltermodel” type=“xsd:string” />
 <xsd: element name=“hashfunctiondescription” type=“xsd:string” />
 <xsd: element name=“bloomfilternumhash” type=“xsd:int” />
 <xsd: element name=“bloomfilterratio” type=“xsd:int” />
 </xsd:sequence>
</xsd:complexType>

<gsdl:serviceDataDescription
 name=“bloomFilterConfiguration”
 type=“tns:bloomFilterParameters”
 minOccurs=“0”
 maxOccurs=“unbounded”
 mutability=“constant”>
 <wsdl:documentation>

Parameters relating to the setup of an LRC for bloom filter compression. The
bloomfiltermodel describes the model being used for bloom filter compression. The
hashfunctiondescription characterizes the hash functions being used to generate the

GWD-I June 4, 2003

annc@isi.edu 8

bloom filters. The bloomfilternumberhash value is the number of hash functions used in
creating the bloom filters; the default value is 3. The bloomfilterratio value is the ratio of
bloom filter size to the approximate number of LNs in the LRC; the default value is 10.
We should configure the LRC to generate multiple bloom filters with different parameters;
thus there can be an unbounded number of Bloom Filter Configurations.

 </wsdl:documentation>
</gsdl:serviceDataDescription

<gsdl:serviceDataDescription
 name=“serviceUptime”
 type=“xsd:int”
 minOccurs=“1”
 maxOccurs=“1”
 mutability=“mutable”>
 <wsdl:documentation>

Specifies how long the LRC service has been operational. [Note: this service data
element will likely be eliminated when the Common Resource Model port type is available as part
of the OGSI standard..]
 </wsdl:documentation>
</gsdl:serviceDataDescription

<gsdl:serviceDataDescription
 name=“numberSubscribers”
 type=“xsd:int”
 minOccurs=“1”
 maxOccurs=“1”
 mutability=“mutable”>
 <wsdl:documentation>

Specifies how many services have subscribed to this service. [Note: this service data
element will likely be eliminated when the Common Resource Model port types is available as
part of the OGSI standard..]
 </wsdl:documentation>
</gsdl:serviceDataDescription

<gsdl:serviceDataDescription
 name=“numberRegisteredLogicalNames”
 type=“xsd:int”
 minOccurs=“1”
 maxOccurs=“1”
 mutability=“mutable”>
 <wsdl:documentation>

Specifies how many logical names are registered in the LRC service.
 </wsdl:documentation>
</gsdl:serviceDataDescription

<gsdl:serviceDataDescription
 name=“numberRegisteredTargetNames”
 type=“xsd:int”
 minOccurs=“1”
 maxOccurs=“1”
 mutability=“mutable”>
 <wsdl:documentation>

Specifies how many target names are registered in the LRC service.
 </wsdl:documentation>
</gsdl:serviceDataDescription

GWD-I June 4, 2003

annc@isi.edu 9

<gsdl:serviceDataDescription
 name=“numberRegisteredMappings”
 type=“xsd:int”
 minOccurs=“1”
 maxOccurs=“1”
 mutability=“mutable”>
 <wsdl:documentation>

Specifies how many mappings from logical to target names are registered in the LRC
service.
 </wsdl:documentation>
</gsdl:serviceDataDescription

<xsd: complexType name=“definedAttributeInformation”>
 <xsd:sequence>
 <xsd: element name=“attributeName” type=“xsd:string” />
 <xsd: element name=“objectType” type=“xsd:string” />
 <xsd: element name=“attributeType” type=“xsd:string” />
 </xsd:sequence>
</xsd:complexType>

<gsdl:serviceDataDescription
 name=“definedAttributeList”
 type=“tns:attributeInformation”
 minOccurs=“0”
 maxOccurs=“unbounded”
 mutability=“mutable”>
 <wsdl:documentation>

List of user-defined attributes that have been specified for logicalNames and
targetNames in the LRC.

 </wsdl:documentation>
</gsdl:serviceDataDescription

4.2 ServiceAdministration PortType: Operations and Messages
The methods currently supported in the ServiceAdministration PortType involve creation and
deletion of attribute definitions.

4.2.1 ServiceAdministration :: CreateAttribute
This function defines a new attribute that will be associated with either a logicalName or a
targetName.

Input:
• AttributeName
• ObjectType: specifies whether the new attribute is associated with a logicalName or

targetName
• AttributeType: specifies the type of the attribute (either integer, floating point, string or date)
Output:
Fault(s):

4.2.2 ServiceAdministration :: DeleteAttribute
This function deletes an existing attribute that is associated with either a logicalName or a
targetName.

Input:

GWD-I June 4, 2003

annc@isi.edu 10

• AttributeName
• ObjectType: specifies whether the new attribute is associated with a logicalName or

targetName
• ClearValues: If this Boolean value is true, then any values for this attribute are first removed

from the objects with which they are associated. If false, then if any values exist, an error
message is returned.

Output:
Fault(s):

[Note: In a fully service-oriented architecture, the use of attributes is likely to change significantly.
Attributes that are currently associated with a targetName would become service data elements
of the dataset service. Attributes that are currently associated with the logicalName would
become service data elements of the replicaSet service that represents the equivalence set of
replicated datasets. An LRC index service might cache these attribute values for more efficient
search operations or may only store references to the dataset or replicaSet services where the
attributes are located.]

5. The MappingsAdministration PortType
The MappingsAdministration PortType provides Service Data Descriptions and methods
associated with creating and deleting LRC mappings and attributes.

5.1 MappingsAdministration PortType: Service Data Descriptions

5.2 MappingsAdministration PortType: Operations and Messages

5.2.1 MappingsAdministration :: AddMapping
Creates a mapping in the LRC between a logical name (a URI) and a target name. The target
name is specified as a URI and may be either a physical location (URL) or a logical name (URN).

Input:
• LogicalName: A logical name that is already registered in the catalog.
• TargetName: The name (a URI) to which the logical name is mapped. This name may be

either a physical name (URL) or logical name (URN).
Output:
Fault(s):

5.2.2 MappingsAdministration :: DeleteMapping
Deletes an existing mapping in the LRC between a logical name and a target name.

Input:
• LogicalName: A logical name in an existing mapping in the catalog.
• TargetName: A name to which the logical name is mapped in an existing catalog mapping.
Output:
Fault(s):

5.2.3 MappingsAdministration :: AddAttributeValue
This method adds a new attribute value that will be associated with either a logicalName or a
targetName.

Input:
• Key: LogicalName or TargetName that identifies the object to which the attribute value should

be added.

GWD-I June 4, 2003

annc@isi.edu 11

• ObjectType: specifies whether the new attribute is associated with a logicalName or
targetName

• AttributeType: specifies the type of the attribute (either integer, floating point, string or date)
• AttributeName: The name of an attribute previously created by the CreateAttribute method of

the ServiceAdministration PortType.
• AttributeValue
Output:
Fault(s):

5.2.4 MappingsAdministration :: RemoveAttributeValue
This method removes an existing attribute value that is associated with either a logicalName or a
targetName.

Input:
• Key: LogicalName or TargetName that identifies the object with the attribute value that will be

removed.
• ObjectType: specifies whether the new attribute is associated with a logicalName or

targetName
• AttributeName: The name of an attribute to be removed
Output:
Fault(s):

[Note: The working group should discuss whether there is a need for a method to add/remove
multiple attributes atomically or to atomically add a mapping and a set of associated attributes.
The current port type requires separate method invocations for each mapping and each attribute.
While this requires more method calls, it places relatively few constraints on the implementation.
By contrast, if complex, atomic operations are required, they would require the LRC to implement
fairly complex transactions.]

[Note: In a fully service-oriented architecture, the methods specified in this port type may
disappear. A client would not directly create or delete mappings or attribute values in the LRC.
Rather, these attributes would be associated with dataset or replicaSet services. The LRC would
subscribe to these services and index the service content (mappings and attributes) to provide
efficient search capabilities.]

6. The QueryMappings PortType
The QueryMappings PortType provides Service Data Descriptions and methods associated with
querying existing LRC mappings and their attributes.

[An important open question for the working group is whether the LRC content should be queried
using the methods specified here, or whether the contents of the LRC should be exposed as grid
service state and represented using service data elements. In the latter case, we would need
richer query mechanisms than are currently available from Grid Services to provide all the
wildcard searches, etc., that are currently available through the QueryMappings port type. In
particular, we would need to provide a mechanism to map from the XPATH queries that will be
supported on grid service data to the query mechanism used by the LRC service implementation,
e.g., SQL.]

6.1 QueryMappings PortType: Service Data Descriptions and Elements

6.2 QueryMappings PortType: Operations and Messages

6.2.1 QueryMappings :: QueryLogicalNameExists
Checks whether there is an existing entry in the LRC for the specified logical name.

GWD-I June 4, 2003

annc@isi.edu 12

Input:
• LogicalName: A logical name (URI)
Output:
Fault(s):

6.2.2 QueryMappings :: QueryTargetNameExists
Checks whether there is an existing entry in the LRC for the specified target name.

Input:
• TargetName: This name (a URI) may refer to either a physical location or a logical name.
Output:
Fault(s):

6.2.3 QueryMappings :: GetMappingsWithLogicalName
Returns all {logicalName, targetName}mappings registered in the LRC that contain the specified
logicalName.

Input:
• LogicalName
Output:
• {LogicalName, TargetName} mappings: One or more registered mappings that contain the

specified logicalName.
Fault(s):

6.2.4 QueryMappings :: GetMappingsWithTargetName
Returns all {logicalName, targetName}mappings registered in the LRC that contain the specified
targetName.

Input:
• TargetName: This name (a URI) may refer to either a physical location or a logical name.
Output:
• {LogicalName, TargetName} mappings: One or more registered mappings that contain the

specified targetName.
Fault(s):

6.2.5 QueryMappings :: WildcardMatchLogicalNamePattern
Returns all {logicalName, targetName}mappings registered in the LRC that match the wildcard
expression for logicalNamePattern.

Input:
• LogicalNamePattern: Pattern to be used in wildcard match against logical names registered

in the LRC.
• PatternType: Specifies interpretation of wildcard characters.
Output:
• {LogicalName, TargetName} mappings: One or more registered mappings whose

logicalName values match the pattern specified by logicalNamePattern.
Fault(s):

6.2.6 QueryMappings :: WildcardMatchTargetNamePattern
Returns all {logicalName, targetName}mappings registered in the LRC that match the wildcard
expression for targetNamePattern.

Input:

GWD-I June 4, 2003

annc@isi.edu 13

• TargetNamePattern: Pattern to be used in wildcard match against target names registered in
the LRC.

• PatternType: Specifies interpretation of wildcard characters.
Output:
• {LogicalName, TargetName} mappings: One or more registered mappings whose

targetName values match the pattern specified by targetNamePattern.
•
Fault(s):

6.2.7 QueryMappings :: GetAttributeDefinition
Returns{attributeName, objectType, attributeType}definitions for specified attribute name and
object type.

Input:
• AttributeName
• ObjectType: specifies whether the new attribute is associated with a logicalName or

targetName
Output:
• {AttributeName, ObjecctType, AttributeType} definitions of attributes, where AttributeType

specifies the type of the attribute (either integer, floating point, string or date)
Fault(s):

6.2.8 QueryMappings :: GetAttributeValue
Returns{attributeName, objectType, attributeType, attributeValue}tuple for specified query.

Input:
• Key: LogicalName or TargetName that identifies the object with which the attribute value is

associated.
• AttributeName: The name of an attribute to retrieve. If NULL all attributes for the specified

Key and ObjectType are returned.
• ObjectType: specifies whether the attribute is associated with a logicalName or targetName
Output:
• {AttributeName, ObjectType, AttributeType, AttributeValue} results, where AttributeType

specifies the type of the attribute (either integer, floating point, string or date)
Fault(s):

6.2.9 QueryMappings :: SearchAttributesByValue
Returns{attributeName, objectType, attributeType, attributeValue}tuple for attributes that match
the specified comparison operation.

Input:
• AttributeName: The name of an attribute to retrieve. If NULL all attributes for the specified

Key and ObjectType are returned.
• ObjectType: specifies whether the attribute is associated with a logicalName or targetName
• Operation: specifies the logical operation performed by the search query. Possible options

include:
o Return all values
o Return values matching operand1
o Return values not matching operand1
o Return values greater than operand1
o Return values greater than or equal to operand1
o Return values greater than or equal to operand1

GWD-I June 4, 2003

annc@isi.edu 14

o Return values less than or equal to operand1
o Return values less than or equal to operand1
o Return values between operand1 and operand2
o Return strings “like” operand1 (SQL like)

• Operand1Type: may be integer, floating point, string or date
• Operand1Value
• Operand2Type: (optional) may be integer, floating point, string or date
• Operand2Value: (optional)

Output:
• {AttributeName, ObjectType, AttributeType, AttributeValue} results, where AttributeType

specifies the type of the attribute (either integer, floating point, string or date)
Fault(s):

[An open issue is how to support richer queries across multiple attributes. The
SearchAttributesByValue method specified here provides a limited set of operations on one or
two operands. A more general query mode is requiredl. If the state of the LRC is exposed as
service data, then the query model corresponds to that available for service data in the
GridService PortType.]

[Note: In a fully service-oriented architecture, some of these methods may change or be
eliminated, depending on whether the LRC indexes attributes.]

7. The GridService PortType

As specified by the Grid Services Specification, the LRC must implement the GridService
PortType. The GridService portType encapsulates behavior including querying against the
serviceDataSet of the Grid service instance and managing the termination of the instance.

Operations provided by the GridService PortType include FindServiceData,
queryByServiceDataName, setTerminationTime for the service, and Destroy. In particular, the
FindServiceData method can be used to query any of the service data elements whose
descriptions are defined in this document. In particular, the FindServiceData method can be used
to synchronously query the soft state of the LRC, effectively forcing a synchronous soft state
update.

8. Security Considerations

Our proposal is for an OGSI-Compliant grid service. Therefore, our service will have all the same
security capabilities and issues as other OGSI-compliant services. Additional security
considerations relating to this specification are described in [3].

Author Information

Ann L. Chervenak, USC Information Sciences Institute, 4676 Admiralty Way, Suite 1001, Marina
del Rey, CA 90292, USA, annc@isi.edu

Karl Cjakowski, USC Information Sciences Institute, 4676 Admiralty Way, Suite 1001, Marina del
Rey, CA 90292, USA, karlcz@isi.edu

GWD-I June 4, 2003

annc@isi.edu 15

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (date). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the GGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
GGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE."

References

[1] “Giggle: A Framework for Constructing Scalable Replica Location Services”, Ann Chervenak,
Ewa Deelman, Ian Foster, Leanne Guy, Wolfgang Hoschek, Adriana Iamnitchi, Carl Kesselman,
Peter Kunszt, Matei Ripenu, Bob Schwartzkopf, Heinz Stocking, Kurt Stockinger, Brian Tierney to
appear in Proceedings of SC2002 Conference, November 2002.

[2] “Open Grid Services Infrastructuure (OGSI)”, S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S.
Graham, C. Kesselman, D. Snelling, P. Vanderbilt, Global Grid Forum Open Grid Services
Infrastructure (OGSI) Working Group, February 17, 2003.

[3] “Evolution of the Replica Location Service Specification to Represent Datasets as Grid
Services”, Ann Chervenak and Karl Czajkowski, Global Grid Forum OGSA Data Replication
Services (OREP) Working Group, June 4, 2003.

