
Rosa Badia, IBM Barcelona
Robert Hood, NASA
Thilo Kielmann, Vrije Universiteit
Christine Morin, INRIA Rennes
Stephen Pickles, University of Manchester
Massimo Sgaravatto, INFN Padova
Paul Stodghill, Cornell University (editor)
Nathan Stone, Pittsburgh Supercomputing Center
Heon Y. Yeom, Seoul National University
November 5, 2004

GridCPR
Request for Comments: GWD-XXX-00x-7

Obsoletes: number
Category: informational

1

Use-Cases for Grid Checkpoint and Recovery2

Status of This Memo3

This memo provides information to the Grid community regarding use-case scenarios for Grid Checkpointing and4

Recovery. It does not define any standards or technical recommendations. Distribution is unlimited. This is a DRAFT5

document and continues to be revised.6

Abstract7

This document describes use-cases to be addressed by the Grid Checkpoint and Recovery Working Group (GridCPR8

WG). The scenarios are also used to determine a set of requirements for these standards.9

Full Copyright Notice10

Copyright c© Global Grid Forum (2004). All Rights Reserved.11

This document and translations of it may be copied and furnished to others, and derivative works that comment on12

or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or13

in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all14

such copies and derivative works. However, this document itself may not be modified in any way, such as by removing15

the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing16

Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be17

followed, or as required to translate it into languages other than English.18

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or19

assigns.20

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID21

FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY22

WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR23

ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."24

Intellectual Property Statement25

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might be26

claimed to pertain to the implementation or use of the technology described in this document or the extent to which27

any license under such rights might or might not be available; neither does it represent that it has made any effort28

to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses29

to be made available, or the result of an attempt made to obtain a general license or permission for the use of such30

proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.31

stodghil@cs.cornell.edu
GWD-XXX-00x-7

GridCPR-WG
Use-Cases for Grid Checkpoint and Recovery

Page: 2
November 5, 2004

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other32

proprietary rights which may cover technology that may be required to practice this recommendation. Please address33

the information to the GGF Executive Director.34

Contents35

1 Introduction 236

2 Consumer Use-Cases Within Scope 337

2.1 C3 . 338

2.2 Cactus .339

2.3 RealityGrid .340

2.4 XCAT3 . 441

3 Producer Use-Cases Within Scope 442

3.1 SRS .443

3.2 TCS .544

3.3 European DataGrid .545

3.4 GridLab .646

4 Use-Cases Outside of Scope 647

5 Summary and Requirements 748

6 Editor Information 849

1 Introduction50

One of the goals of the Grid Checkpointing and RecoveryWorking Group (GridCPR WG) is to,51

define a user-level API and associated layer of services that will permit checkpointed jobs to be recovered52

and continued on the same or on remote Grid resources. [21]53

In order to understand the requirements of these API’s and services, it is necessary to understand the situations in54

which they will be used. The purpose of this document is to enumerate usage scenarios that the GridCPR WG have55

decided must be addressed by its specifications. These scenarios will be used to derive a set of requirements for the56

GridCPR API and services.57

There are two fundamental approaches to saving the state of a job, Application-Level CPR (ALC) and System-58

Level CPR (SLC). InApplication-Level CPR (ALC), the checkpointing and recovery function is performed by the59

application. That is, the application’s source code contains explicit instructions for performing the CPR. In this case,60

the critical program variables and data structures are saved. InSystem-Level CPR (SLC), checkpointing and recovery61

done external to the application, i.e. on the application’s behalf without modification of the application itself. This62

may mean saving the processor’s registers, stack, and memory at the point that the checkpoint is taken.63

The current scope of GridCPR WG as described in its charter includes Grid applications that implement ALC. The64

use-cases in Sections 2 and 3 rely on ALC to various degrees. Use-cases based on SLC were judged to be outside the65

WG’s current scope and are discussed in Section 4.66

The in scope use-cases can be further classified. Some of the use-cases describe applications or libraries that could67

use GridCPR systems. We call theseconsumersof GridCPR function and describe them in Section 2. Other use-cases68

describe systems that implement CPR and could one day evolve to be GridCPR systems. We call theseproducersof69

GridCPR function and describe them in Section 3.70

2

stodghil@cs.cornell.edu
GWD-XXX-00x-7

GridCPR-WG
Use-Cases for Grid Checkpoint and Recovery

Page: 3
November 5, 2004

2 Consumer Use-Cases Within Scope71

2.1 C3
72

The C3 system is a precompiler that can be used to add ALC to existing application source code. The developer adds73

directives to the application source code to indicate the points at which checkpoints can be taken, and C3 uses program74

transformations to augment the application with code to save critical program variables and data structures. C3 also75

uses compiler optimizations to reduce the size and overhead of taking checkpoints.76

The C3 system also provides features to ensure that consistent checkpoints of MPI jobs [5, 6]. Work is currently77

underway to extend this work to handle truly automatic portable checkpointing within a Grid-environment. This will be78

done using type-safe language (e.g., Java, C#) or type-safe dialects (CCured, Cylone) and process over-decomposition.79

The C3 system has several runtime subsystems that are responsible for providing the checkpoint file and signal80

management. These subsystems could easily be replaced with a GridCPR system. In this way, C3 is a user of GridCPR81

systems.82

Functional requirements:83

• API for application state writing and reading.84

• Services for failure notification.85

• Services for checkpoint data transport.86

• Services for checkpoint data management.87

2.2 Cactus88

[8, 1, 12] provides application level checkpointing for any codes written within the framework. The functionality is89

transparent to the application developer and user, and checkpointing and recovery is usually requested in the parameter90

file at run time. Checkpointing may also be requested dynamically during a run through a steering interface such as91

the HTTPD web interface, or the application code can dynamically react to simulation data and request checkpointing92

itself through the Cactus API. Checkpoints can be written and read in several different architecture independent binary93

data formats, including HDF5 and FlexIO. Parallel Cactus applications can be checkpointed on one machine and then94

recovered on a different architecture machine using a different number of processors.95

Functional requirements:96

• API for application state writing and reading.97

• Services for failure notification.98

• Services for checkpoint data transport.99

• Services for checkpoint data management.100

2.3 RealityGrid101

The RealityGrid [20, 17, 16] project provides limited support for jobs that contain ALC functionality. RealityGrid does102

not provide a complete set of CPR services. Rather, application developers are expected to instrument applications103

to read and write checkpoint files in whatever format they want and RealityGrid provides functions for managing and104

transporting these files. RealityGrid is able to provide transport within a heterogeneous computing environment, but it105

is the developer’s responsibility to generate heterogeneous checkpoint files.106

RealityGrid’s CPR support enables jobs to implement fault-tolerance and to implement strategies for long running107

computations to save state at the end of a fixed length batch run. In either case, jobs can be restarted from checkpoints108

in subsequent batch allocations. This support Also enables job migration in heterogeneous computing environments.109

RealityGrid also enables jobs to provide “rewind” capabilities that are based upon the CPR system. Rewind can110

be used not only for debugging, but for computational steering as well [7, 9]. A common use involves the user running111

a computationally intensive simulation in a mode that produces low-resolution results. The user can then rewind the112

3

stodghil@cs.cornell.edu
GWD-XXX-00x-7

GridCPR-WG
Use-Cases for Grid Checkpoint and Recovery

Page: 4
November 5, 2004

simulation to a point of interest and rerun it with options to produce high-resolution results only in the region of113

interest.114

The RealityGrid project enables this sort of parametric exploration by supporting “checkpoint trees” [18]. That is,115

the RealityGrid system enables checkpoint files to be linked together in a manner that encodes the causal relationship116

between them. This enables a user to construct and manage exploration trees. Combined with the visualization tools117

rewind features discussed in the previous section, these capabilities provide the computational scientist with very118

powerful tools for scientific discovery.119

RealityGrid applications and the steering library have the following functional requirements,120

• API for application state writing and reading.121

• Services for checkpoint data transport.122

• Services for checkpoint data management.123

• Services for job management.124

Technically, RealityGrid is also a provider of GridCPR functions. It provides the following key functions,125

• Services for checkpoint data transport.126

2.4 XCAT3127

XCAT3 [15] is a Common Component Architecture application framework based on Grid standards. One of the128

functions that XCAT3 provides is checkpointing for CCA-based applications. Because these applications can be129

executed on a number of distributed computing resources, consistency is a consideration when checkpointing. XCAT3130

handles this by providingApplication Coordinators. When a checkpoint is required, the user or some other agent131

notifies the Application Coordinator, which then executes a blocking coordination protocol between the distributed132

components.133

In order to provide checkpointing within a heterogeneous computing environment, XCAT3 uses application-level134

checkpointing. Also, checkpoint data is stored in XML to ensure maximum portability.135

In order to ensure the availability of checkpoint data in the event of processor failure, XCAT3 assumes a Storage136

Service Federation, which can provide stable storage for checkpoint data.137

Functional requirements:138

• API for application state writing and reading.139

• Services for checkpoint data management.140

3 Producer Use-Cases Within Scope141

3.1 SRS142

TheStopRestartSystem (SRS) [23] provides a user-level checkpointing library and a Runtime Support System (RSS)143

that manages the checkpointed data. A unique feature of SRS is that it allows for reconfiguration of the executing144

MPI application both in terms of the number of machines used for application execution and the data distributions145

used in the application between checkpoints and continuations. SRS is primarily intended for Grid scheduling and146

resource management systems to migrate executing parallel application across distributed heterogeneous sites that do147

not share common file systems. It also provides fault-tolerance by enabling the application to withstand and recover148

from non-deterministic errors caused during application execution.149

SRS provides for the transport of checkpoint data between Grid computing resources using IBP [19]. Applications150

register with an external agent, the RSS, in order to transfer information about checkpoint locations and to coordinate151

job management.152

• API for application state writing and reading.153

4

stodghil@cs.cornell.edu
GWD-XXX-00x-7

GridCPR-WG
Use-Cases for Grid Checkpoint and Recovery

Page: 5
November 5, 2004

• Services for limited job management. An external agent, the RSS, is used for maintaining configuration infor-154

mation across job instances and for coordinating job stopping and resuming.155

• Services for checkpoint data management and transport. The RSS maintains information about a job’s check-156

point data and checkpoint data is moved between computing resources using IBP.157

3.2 TCS158

The checkpoint system for the Pittsburgh Supercomputer Center’s Terascale Computing System (TCS) [22] allows159

for the automated recovery of jobs following both machine failures and scheduled maintenance periods. When a node160

failure is detected, the system determines whether that node was currently running a user’s job. If so, the user’s account161

is credited for the lost of time and the job is rescheduled for further execution.162

The system also provides for user termination and migration of jobs. The user is provided with interfaces for163

checkpoint and halting a running job, for migrating the applications checkpoint and data files to a different compu-164

tational resource, and for resuming the job on the new resource. There is also a means of querying the CPR system165

about the state of jobs and checkpoint data.166

This checkpointing system is not transparent to the application; the user must modify their application to use the167

appropriate API’s. Also, if the user wished to migrate a running job to a different cluster, then the user is responsible168

for ensuring that the checkpoint data is written in a portable manner.169

One of the novel features of TCS is that it allows the user to set the policy for where checkpoint data should be170

stores. Currently supported policies include on node-local disks, using a parity scheme over several nodes, and entirely171

off-processor.172

Key functions:173

• API for application state writing and reading.174

• Services for failure notification.175

• Services for job management.176

• Services for checkpoint data transport.177

• Services for checkpoint data management.178

• Collaboration with accounting services.179

3.3 European DataGrid180

CPR in the European DataGrid (EDG) [11] is used to provide some form of fault-tolerance to jobs, which is particularly181

important for long-running jobs, such as those in High Energy Physics. In this system, the developer is responsible182

for determining the job state that must be saved and restored. The system is responsible for noticing failures and183

automatically resubmitting jobs for further execution.184

The primary purpose of Grid checkpointing within the EDG project [11] is for fault-tolerance. In the event of a185

failure, it attempts to avoid having to rerun jobs from the beginning. This provides better resource utilization, since186

computations are only performed. This is in particular important for long running jobs, as is the case for many of the187

target HEP (High Energy Physics) applications that can run for many hours or days.188

In the EDG, the user is responsible for determining what part of the job state must be saved in order to correctly189

restart. It is also up to the user to determine the points in job’s execution at which the state must be saved. Furthermore,190

the application Also, the application must be instrumented to be able to restart from a previously saved state. This is191

all done by instrumenting the code with the proper EDG Grid Checkpointing API’s.192

Given this framework, EDG now supports two main use-cases:193

• An instrumented job runs on a computing resource and periodically saves its state. Let’s suppose that a “Grid194

failure”, i.e. a failure external to the job (e.g. a failure in the computing resource where the job was running) oc-195

curs. If the Grid middleware is able to detect the failure, the EDG Workload Management System automatically196

5

stodghil@cs.cornell.edu
GWD-XXX-00x-7

GridCPR-WG
Use-Cases for Grid Checkpoint and Recovery

Page: 6
November 5, 2004

(assuming that the user has enabled this option) reschedules the job and resubmits the job to a (possibly differ-197

ent) compatible resource. When the job restart its execution, the last saved state is retrieved, and the application198

restarts the computation from that point.199

• If some other undetected failure occurs while an instrumented job is running, EDG allows the user to manually200

restart the job from one of the previously saved checkpoints. Although it is not possible to use this approach to201

recover from arbitrary failures (e.g., incorrect input data), it is possible to correct certain failures before resuming202

(e.g., missing input data file).203

Another scenario where job checkpointing is used in the EDG environment is calledjob partitioning. The idea is204

that a job can be partitioned in sub-jobs, which can be executed in parallel. Then a “job aggregator” is responsible to205

collect the results of these sub-jobs (represented by their “final” states) and provides the overall results.206

The EDG project also plans to exploit Grid Checkpointing for job preemption. In this scenario, it might be207

necessary to migrate jobs from a computational resources for a certain reason (e.g. because that machine must be used208

to run an other job with higher priority), but this functionality is not yet supported.209

Key functions:210

• API for application state writing and reading.211

• Services for failure notification.212

• Services for job management.213

• Services for checkpoint data transport.214

• Services for checkpoint data management.215

• Services for sub-job result collection and aggregation.216

• Services for priority-based scheduling and preemption (planned).217

3.4 GridLab218

In the GridLab project [13, 2], a job, consisting of one or more processes, is running on a Grid machine. In the219

middle of the run, the job may be forced to migrate to a different machine, possibly with a different architecture and/or220

number of CPUs. The application program may either decide by itself to migrate (e.g. poor performance on the221

current machine) or may be forced to do so, either by the user (via an application manager) or by the local resource222

management software that wishes to evict the job. The main purpose of GridCPR in GridLab thus is the ability to223

interrupt and migrate a job until it finally terminates. Fault-tolerance is only a secondary aspect.224

An extension of the above use-case is dealing with jobs that run concurrently at multiple Grid sites.225

Applications save their state to regular files. Checkpoint meta data can be stored in GridLab’s "advert service", al-226

lowing the checkpoint file(s) to be found and retrieved after restart. File transport is done via GridLab’s data movement227

service (or via GridFTP) [3].228

Key functions:229

• Services for checkpoint data transport, via GridLab’s data movement service or GridGTP.230

• Services for checkpoint data management, via Advert Service.231

• Services to enable checkpoint of jobs at multiple Grid sites.232

4 Use-Cases Outside of Scope233

A number of SLC-based use-cases were submitted to this working group for consideration. Since they do not “allow234

application developers to write portable, resource- independent code to handle checkpointing and recovery operations235

in a consistent manner across different Grid resources”, SLC systems are outside of the current scope of the GridCPR236

working group. We mention them here for completeness1.237

1One can envision SLC systems leveraging functions of GridCPR systems (e.g., checkpoint data reading/writing, transport and management).
Nevertheless, since they are fundamentally system-level, homogeneous or not Grid related, as applications, they are outside of scope.

6

stodghil@cs.cornell.edu
GWD-XXX-00x-7

GridCPR-WG
Use-Cases for Grid Checkpoint and Recovery

Page: 7
November 5, 2004

Kerrighed. The Kerrighed system [4] provides a single system image OS than can be run within and across clusters.238

Its goal is to provide SLC of sequential and parallel jobs, and to enable transparent failover and migration of such jobs239

within a cluster federation. Loosely-coupled distributed jobs are handled by forcing processes to checkpoint when240

certain communication occurs and by affixing certain causality information to messages.241

MPICH-GF. MPICH-GF [14] supports user-transparent SLC for fault tolerance of MPI jobs running within a ho-242

mogeneous computing environment. MPICH-GF is provided as a library that is linked with the unmodified application243

source code. The system provides checkpointing and message logging and a job management system that monitors244

the job, periodically sends checkpoint signals to the job, and restart the job if a failure occurs.245

Déjà Vu. Déjà Vu[10] provides transparent SLC for stock native jobs. In addition to state-saving, it also uses dy-246

namic linking to provide alternative versions of certain system libraries. This enables Déjà Vuto support the execution247

of certain system calls across checkpoints and to support reliable transport protocols for network communication.248

5 Summary and Requirements249

There are a minimum set of API’s and services that are required in order to implement the use-cases described above.250

In this section, we discuss these, vis-a-vis the use-cases. In the Architecture document that will also be developed by251

this working group, these API’s and services will be described in much greater detail.252

Figure 1 shows the relationship between an application and the various API’s and services. The first thing to notice253

is that the box labelled “Application” contains a box labelled “Computation”. Some of the use-cases envisions an254

existing computation being directly modified to interact with a GridCPR system. This could be done via an automatic255

program transformation tool, likeC3 or by changes to an application framework, like Cactus or XCAT3. In other256

use-cases, there is an agent that is external to the core computation that is responsible for ensuring the continuation of257

the computation. EDG and RealityGrid are examples of this.258

Figure 1: Architecture from Application point-of-view

Whatever the configuration, the Application interacts with the GridCPR system via a set of four API’s2. In ad-259

dition to the API’s, several of the use-cases also presupposed the existence of certain services. These are shown as260

disconnected components of the archicture in Figure 1. That is, the services are necessary for the use-cases to be261

implemented, but the Applications do not necessarily need to directly interact with these services.262

The API’s shown in Figure 1 are as follows,263

Application state writing and reading. Functions must be provided for writing and reading the application variables264

to the checkpoint data that is managed by the GridCPR system.265

2None of the use-cases clearly required accessing the GridCPR system by, for instance, command-line or GUI tools, but these tools are clearly
desirable and implementable using these API’s.

7

stodghil@cs.cornell.edu
GWD-XXX-00x-7

GridCPR-WG
Use-Cases for Grid Checkpoint and Recovery

Page: 8
November 5, 2004

Checkpoint data management.Once the checkpoint data has been created, it needs to be managed. For example,266

there needs to functions for deleting checkpoint data that is no longer needed. Also, this API should provide a267

mechanism for querying the meta-data that is associated with checkpoint data.268

Failure/event notification. Some of the use-cases provide agents that reschedule jobs that fail during their execution.269

In order to do this, there must be a mechanism for the agents to discover that failures have occurred.270

Job management.In order for an agent to reschedule a failed job, these must be functions for interacting with a271

scheduling service.272

It is assumed that there are services associated with the API’s described above. In addition to these, the following273

services are shown in Figure 1:274

Checkpoint data transport. In order for a job to be started on a different Grid computing resource than the one on275

which its checkpoint data was created, there must be a mechanism for transferring checkpoint data between276

Grid computing resources. Several of the use-cases, such as SRS and TCS, currently provide such transport277

mechanism for checkpoint data.278

Authentication, authorization, and accounting None of the use-cases explicitly discussed security, but data in-279

tegrity is clearly a necessary requirement for Grid computing. There must be associated services to support280

these functions. One of the use-cases mentioned crediting a user’s account for time lost when a computing281

resource fails.282

6 Editor Information283

Paul Stodghill, Department of Computer Science,284

Upson Hall, Cornell University, Ithaca, NY, 14853, USA285

Phone: 607-254-8838 Email: stodghil@cs.cornell.edu286

Acknowledgments287

This material is based upon work supported by the National Science Foundation under Grant No. 0085969. Any288

opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do289

not necessarily reflect the views of the National Science Foundation.290

References291

[1] G. Allen, T. Goodale, G. Lanfermann, T. Radke, D. Rideout, and J. Thornburg.Cactus Users Guide, 2004.292

[2] Gabrielle Allen, Kelly Davis, Konstantinos N. Dolkas, Nikolaos D. Doulamis, Tom Goodale, Thilo Kielmann,293

André Merzky, Jarek Nabrzyski, Juliusz Pukacki, Thomas Radke, Michael Russell, Ed Seidel, John Shalf, and294

Ian Taylor. Enabling applications on the grid: A gridlab overview.International Journal of High Performance295

Computing Applications: Special issue on Grid Computing: Infrastructure and Applications, August 2003.296

[3] Gabrielle Allen, Tom Goodale, Hartmut Kaiser, Thilo Kielmann, Archit Kulshrestha, Andre Merzky, and Rob297

van Nieuwpoort. A day in the life of a grid-enabled application: Counting on the grid. InWorkshop on Grid298

Application Programming Interfaces, Brussels, Belgium, September 20 2004. Held In Conjunction With GGF12.299

Available at http://www.cs.vu.nl/ kielmann/papers/ggf12ws-gat.pdf.300

[4] Ramamurthy Badrinath, Christine Morin, and Geoffroy Vallée. Checkpointing and recovery of shared memory301

parallel applications in a cluster. InProc. Intl. Workshop on Distributed Shared Memory on Clusters (DSM302

2003), pages 471–477, May 2003. Held in conjunction with CCGrid 2003. Available at http://www.inria.fr/rrrt/rr-303

4806.html.304

8

mailto:stodghil@cs.cornell.edu
http://www.cs.vu.nl/~kielmann/papers/ggf12ws-gat.pdf
http://www.inria.fr/rrrt/rr-4806.html
http://www.inria.fr/rrrt/rr-4806.html
http://www.inria.fr/rrrt/rr-4806.html

stodghil@cs.cornell.edu
GWD-XXX-00x-7

GridCPR-WG
Use-Cases for Grid Checkpoint and Recovery

Page: 9
November 5, 2004

[5] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. Automated application-level check-305

pointing of MPI programs. InACM Symposium on Principles and Practice of Parallel Programming (PPoPP306

2003), 2002.307

[6] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. Collective operations in an application-308

level fault tolerant MPI system. InInternational Conference on Supercomputing (ICS) 2003, San Francisco, CA,309

June 23–26 2003.310

[7] J. M. Brooke, P. V. Coveney, J. Harting, S. Jha, S. M. Pickles, R. L. Pinning, and A. R. Porter. Computational311

steering in realitygrid. InProceedings of the UK e-Science All Hands Meeting, September 2-4 2003. Available312

at http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/179.pdf.313

[8] The cactus code server. http://www.cactuscode.org, May 14 2004.314

[9] J. Chin, J. Harting, S. Jha, P. V. Coveney, A. R. Porter, and S. M. Pickles. Steering315

in computational science: mesoscale modelling and simulation.Contemporary Physics, 44:417–316

434, 2003. Available at http://taylorandfrancis.metapress.com/openurl.asp?genre=article&eissn=1366-317

5812&volume=44&issue=5&spage=417.318

[10] fixme: Missing dejavu reference.319

[11] Alessio Gianelle, Rosario Peluso, and Massimo Sgaravatto. Datagrid: Job partitioning and checkpointing.320

https://edms.cern.ch/document/347730, June 3 2002.321

[12] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, and J. Shalf. The Cactus framework322

and toolkit: Design and applications. InVector and Parallel Processing - VECPAR’2002, 5th International323

Conference, Lecture Notes in Computer Science, Berlin, 2003. Springer.324

[13] Gridlab: A grid application toolkit and testbed. Available at http://www.gridlab.org/, July 21 2004.325

[14] Sangbum Kim, Namyoon Woo, Heon Y. Yeom, Taesoon Park, and Hyoungwoo Park. Design and implementation326

of dynamic process management for grid-enabled MPICH. InProceedings of the 10th European PVM/MPI327

Users’ Group Conference, Venice, Italy, September 2003.328

[15] Sriram Krishnan and Dennis Gannon. Checkpoint and restart for distributed components in xcat3. InGrid 2004,329

5th IEEE/ACM International Workshop on Grid Computing, November 2004.330

[16] Stephen Pickles. On the use of checkpoint/recovery in realitygrid. Available at331

http://gridcpr.psc.edu/GGF/docs/ReG-GridCPR-use-cases.pdf, January 2004.332

[17] Stephen Pickles, Robin Pinning, Andrew Porter, Graham Riley, Rupert Ford, Ken Mayes, David Snelling, Jim333

Stanton, Steven Kenny, and Shantenu Jha. The realitygrid computational steering api - version 1.0. unpublished,334

July 9 2003.335

[18] Stephen M. Pickles, Peter V Coveney, and Bruce M Boghosian. Transcontinental reali-336

tygrids for interactive collaborative exploration of parameter space (triceps). Available at337

http://www.scconference.org/sc2003/inter_cal/inter_cal_detail.php?eventid=10701#5. Winner of SC’03338

HPC Challenge competition in the category “Most Innovative Data-Intensive Application”.339

[19] James S. Plank, Micah Beck, Wael R. Elwasif, Terry Moore, Martin Swany, and Rich Wolski. The internet340

backplane protocol: Storage in the network. InNetStore99: The Network Storage Symposium, Seattle, WA,341

USA, 1999.342

[20] The RealityGrid Project. Realitygrid. http://www.realitygrid.org.343

[21] Derek Simmel, Thilo Kielmann, and Nathan Stone. Draft charter v.1.2, Grid Checkpoint Recovery344

Working Group (GridCPR). Technical report, Global Grid Forum, January 1 2004. Available at345

http://gridcpr.psc.edu/GGF/charter/GridCPR-WG-charter.1.2.txt.346

9

http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/179.pdf
http://www.cactuscode.org
http://taylorandfrancis.metapress.com/openurl.asp?genre=article&eissn=1366-5812&volume=44&issue=5&spage=417
http://taylorandfrancis.metapress.com/openurl.asp?genre=article&eissn=1366-5812&volume=44&issue=5&spage=417
http://taylorandfrancis.metapress.com/openurl.asp?genre=article&eissn=1366-5812&volume=44&issue=5&spage=417
https://edms.cern.ch/document/347730
http://www.gridlab.org/
http://gridcpr.psc.edu/GGF/docs/ReG-GridCPR-use-cases.pdf
http://www.scconference.org/sc2003/inter_cal/inter_cal_detail.php?eventid=10701#5
http://www.realitygrid.org
http://gridcpr.psc.edu/GGF/charter/GridCPR-WG-charter.1.2.txt

stodghil@cs.cornell.edu
GWD-XXX-00x-7

GridCPR-WG
Use-Cases for Grid Checkpoint and Recovery

Page: 10
November 5, 2004

[22] Nathan Stone, John Kochmar, Raghurama Reddy, J. Ray Scott, Jason Sommerfield, and Chad Vizino.347

A checkpoint and recovery system for the pittsburgh supercomputing center terascale computing system.348

http://www.psc.edu/publications/tech_reports/chkpt_rcvry/checkpoint-recovery-1.0.html, December 3 2003.349

[23] S. Vadhiyar and J. Dongarra. SRS: A Framework for Developing Malleable and Migratable Parallel Applications350

for Distributed Systems.Parallel Processing Letters, 13(2):291–312, 2003.351

10

http://www.psc.edu/publications/tech_reports/chkpt_rcvry/checkpoint-recovery-1.0.html

	Introduction
	Consumer Use-Cases Within Scope
	C3
	Cactus
	RealityGrid
	XCAT3

	Producer Use-Cases Within Scope
	SRS
	TCS
	European DataGrid
	GridLab

	Use-Cases Outside of Scope
	Summary and Requirements
	Editor Information

