
GFD-R-P.91 Steve Fisher and A Paventhan
SAGA-RG Rutherford Appleton Laboratory, UK

Version: 1.0 RC.1 18 May 2007

SAGA API Extension: Service Discovery API

Status of This Document

This document provides information to the grid community, proposing a stan-
dard for an extension to the Simple API for Grid Applications (SAGA). As
such it depends upon the SAGA Core API Specification [2]. This document is
intendeded to be used as input to the definition of language specific bindings for
this API extension, and as reference for implementors of these language bind-
ings. Distribution of this document is unlimited.

Copyright Notice

Copyright c© Open Grid Forum (2007-2008). All Rights Reserved.

Abstract

This document specifies a Service Discovery API extension to the Simple API
for Grid Applications (SAGA), a high level, application-oriented API for grid
application development. This Service Discovery API is motivated by a number
of Use Cases collected by the OGF SAGA Research Group in GFD.70 [4], and
by requirements derived from these Use Cases, as specified in GFD.71 [5]). It
allows users to find services with minimal prior knowledge.

GFD-R-P.91 January 15, 2008

Contents

1 Introduction 3

1.1 Notational Conventions . 3

1.2 Security Considerations . 3

2 SAGA Service Discovery API 5

2.1 Introduction . 5

2.2 Specification . 6

2.3 Specification Details . 9

2.4 Examples . 15

3 Intellectual Property Issues 17

3.1 Contributors . 17

3.2 Intellectual Property Statement 17

3.3 Disclaimer . 18

3.4 Full Copyright Notice . 18

References 19

saga-core-wg@ogf.org 2

GFD-R-P.91 Introduction January 15, 2008

1 Introduction

Most of the SAGA use cases [4] exhibit a need for service discovery (SD) -
though it is sometimes described as resource discovery. For example the DiVA
entry says:

DiVA infrastructure must; a) Discover available components on dis-
tributed resources. The list of available components must be search-
able by different attributes. This overlaps the needs of RealityGrid.

and:

On startup, the application must gather a list of available “compo-
nents”. Typically this is done by consulting a local configuration
file to find the locations of the binaries (or bytecode files) associated
with each component as well as their names and interface definitions.
For DiVA, we would like to support the discovery of remote modules
as well by contacting information services on other machines or a
broker that locates components on all machines in a given Virtual
Organization. From the application programmers point of view, they
want to be presented with a searchable database of components (re-
gardless of location) that can be queried and sorted based on criteria
such as “name”, “location”, interface definition, etc... Organization
as an Relational Database or LDAP directory or even a flat-file is
unimportant. The API should be able to hide these details as a
query for components that satisfy the search criteria is presented.

This API extension is tailored to provide exactly this functionality, at the same
time keeping coherence with the SAGA Core API look & feel, and keeping other
Grid related boundary conditions (in particular middleware abstraction and
authentication/authorization) in mind.

1.1 Notational Conventions

In structure, notation and conventions, this documents follows those of the
SAGA Core API specification [2], unless noted otherwise.

1.2 Security Considerations

As the SAGA API is to be implemented on different types of Grid (and non-
Grid) middleware, it does not specify a single security model, but rather provides

saga-core-wg@ogf.org 3

GFD-R-P.91 Introduction January 15, 2008

hooks to interface to various security models – see the documentation of the
saga::context class in the SAGA Core API specification [2] for details.

A SAGA implementation is considered secure if and only if it fully supports
(i.e. implements) the security models of the middleware layers it builds upon,
and neither provides any (intentional or unintentional) means to by-pass these
security models, nor weakens these security models’ policies in any way.

saga-core-wg@ogf.org 4

GFD-R-P.91 SAGA Service Discovery API January 15, 2008

2 SAGA Service Discovery API

2.1 Introduction

The SAGA Service Discovery API provides a mechanism to locate services.

The main SAGA APIs assume that certain URLs are known and will be passed
in to those calls. For example, the constructor for the saga::job::job_service
class takes the URL of a resource manager. The specification allows the imple-
mentation to find the resource manager if no URL is provided. It is, however,
likely that more information from the user are required to obtain a suitable
resource manager. We would expect that a saga::job::job_service imple-
mentation might also make use of this service discovery API. Another example
where the user needs to locate a service is to make a saga::rpc::rpc call.

It is expected that this SD API will make use of various information systems
or other service discovery mechanisms. The quality of the information returned
will depend upon the quality of the data in the back-end system or systems.

2.1.1 Service Model

The API is based upon the GLUE (version 1.3) model of a service [1] as sum-
marised in figure 1.

ServiceData

Service

Site

Figure 1: ER diagram of Service Model

saga-core-wg@ogf.org 5

GFD-R-P.91 SAGA Service Discovery API January 15, 2008

The attributes are not shown as they as more subject to change as GLUE [3]
evolves. The figure indicates that a Site may host many Services and a Service
has multiple ServiceData entries associated with it. Each ServiceData entry
is represented by a key and a value, thus allowing any set of keyword/value
pairs to be associated with an instance of a Service. In addition, a Service
has a many-to-many relationship with itself. This allows the model to describe
groupings of services.1

2.1.2 Classes

The SAGA Service Discovery API consists of a discoverer class with a sin-
gle method: list_services(). This method returns a list of objects of the
service_description class, filtered according to several specified filters. The
service_description class has a method get_url() – which is all that most
people will use to obtain the address registered for the service. In the case of a
Web Service this will be the service endpoint. It also implements the attribute
interface, and thus exposes additional properties of the service, such as service
type, uid and others. These might be used by those who wish to generate a web
page of services, or need detailed information for other purposes.

There is an operation get_related_services that returns the set of related
service_descriptions, which represent related services. Finally, there is a
method get_data to access the set of further key value pairs. This method
returns an service_data object, which also implements the attribute interface
and gives readonly access to all the key names and values in the ServiceData.
By making the service_description implement the attribute interface and
referencing a separate object holding the key value pairs, potential key name
clashes between the two sets of attributes are avoided.

2.2 Specification

package saga.sd {

class discoverer : implements saga::object
{
CONSTRUCTOR (in session session,

out discoverer dis);
DESTRUCTOR (in discoverer dis);

1It is possible that this Service Discovery API may be incompatible with a future version
of GLUE; however the concepts required by the API are currently included in the working
draft of GLUE 2.0. Future revisions of this document will address this issue.

saga-core-wg@ogf.org 6

GFD-R-P.91 SAGA Service Discovery API January 15, 2008

list_services (in string service_filter,
in string data_filter,
in string vo_filter,
out array<service_description> services);

list_services (in string service_filter,
in string data_filter,
out array<service_description> services);

}

class service_description : implements saga::object
implements saga::attribute

{
get_url (out string url);
get_related_services (out array<service_description>

services);
get_data (out service_data data);

// Attributes:
// name: url
// desc: url to contact the service
// mode: ReadOnly
// type: String
// notes: The get_url() call obtains the same information.
//
// name: type
// desc: type of service
// mode: ReadOnly
// type: String
// notes: The specification imposes no rules on the
// values of this field except that it must
// not be an empty string. In addition, all
// SAGA services should use types constructed
// with the form: ‘‘saga::<package>::<class>’’
// where <package> and <class> are the names
// of the package and class providing the
// service.
//
// name: uid
// desc: unique identifier of service
// mode: ReadOnly
// type: String
// notes: The specification imposes no rules on the
// values of this field except that it must
// not be an empty string.
//

saga-core-wg@ogf.org 7

GFD-R-P.91 SAGA Service Discovery API January 15, 2008

// name: site
// desc: name of site
// mode: ReadOnly
// type: String
// notes: The specification imposes no rules on the
// values of this field except that it must
// not be an empty string.
//
// name: name
// desc: name of service - not necessarily unique
// mode: ReadOnly
// type: String
// notes: The specification imposes no rules on the
// values of this field except that it must
// not be an empty string.
//
// name: related_services
// desc: uid of related services
// mode: ReadOnly, optional
// type: Vector String
// value: -
// notes: This returns the uids of the related services.
// This is unlike the call get_related_services()
// which returns an array of service_descriptions.
//
// name: VO
// desc: Names of Virtual Organisations able to use the
// service
// mode: ReadOnly, optional
// type: Vector String
// value: -
// notes: This returns the names of the VOs that may be
// able to use the service. Access to the service
// may be further controlled by an authorization
// mechanism; but this is outside the scope of
// this API.
//

}

class service_data : implements saga::object
implements saga::attribute

{
// no CONSTRUCTOR
DESTRUCTOR (in service_data sd);

// Attributes(extensible):

saga-core-wg@ogf.org 8

GFD-R-P.91 SAGA Service Discovery API January 15, 2008

//
// no attributes pre-defined

}

2.3 Specification Details

class discoverer

The discoverer object is the entry point for service discovery. Apart from
the constructor and destructor it has one operaration: list_services which
returns the list of descriptions of services matching the specified filter strings.

There are three filter strings: service_filter, data_filter and vo_filter
which act together to restrict the set of services returned.

Each of the filter strings uses SQL92 syntax as if it were part of a WHERE clause
acting to select from a single table that includes columns as described below for
that filter type. If the programming language permits it, empty strings may be
replaced by a representatation of NULL. SQL92 has been chosen because it is
widely known and has the desired expressive power.

Three strings are used, rather than one, as this clarifies the description of the
functionality, avoids problems with key values being themselves existing GLUE
attributes, and facilitates implementation as it makes it impossible to specify
constraints that relate, for example, VO and service type.

Only the following operators are permitted in the expressions: IN, LIKE, AND, OR,
NOT, =, >=, >, <=, <, <> in addition to column names, parentheses, column values
as single quoted strings, numeric values and the comma. An implementation
should try to give an informative error message if the filter string does not
conform. It is, however, sufficient to report in which filter string the syntax
error was found.

The LIKE operator matches patterns:

’%xyz’ matches all entries with trailing xyz

’xyz%’ matches all entries with leading xyz

’%xyz%’ matches all entries with xyz being substring

Column names are not case sensitive but values are.

saga-core-wg@ogf.org 9

GFD-R-P.91 SAGA Service Discovery API January 15, 2008

For matching on multivalued attributes it is sufficient that one attribute in the
information system matches.

Service Filter

Column names in the service_filter are dependent upon the GLUE service
definition. Only those attributes considered useful to service discovery are sup-
ported. For GLUE 1.2 these are:

type type of service. This API does not restrict values of the service type - it
might be a DNS name, a URN or any other string. However, all SAGA
services SHOULD use types constructed with the form:

org.ogf.saga.service.<service_type_name>

where <service_type_name> is the name of the type of SAGA service.
The names must be entirely lower case and must start with a letter option-
ally followed by letters, digits and hyphens. The last character must not
be a hyphen. Service type names for the core services defined in GFD.90
are defined in table 1 below. For each <service_type_name>, the package
and class implementing that service is shown. Other SAGA packages are
responsible for defining their own service names within their specifications.

Name Package Class
job saga.job job service
file saga.file file
directory saga.file directory
logical-file saga.logical file logical file
logical-directory saga.logical file logical directory
stream saga.stream stream service
rpc saga.rpc rpc

Table 1: SAGA service type names.

name name of service (not necessarily unique)

uid unique identifier of service

site name of site the service is running at

url the endpoint to contact the service - will normally be used with the LIKE
operator

related services for related services. The user should specify the service’s uid.

saga-core-wg@ogf.org 10

GFD-R-P.91 SAGA Service Discovery API January 15, 2008

Some examples are:

• type = ’org.ogf.saga.service.job’

• site IN (’INFN-CNAF’, ’RAL-LCG2’)

• type = ’org.glite.ResourceBroker’ AND Site LIKE ’%INFN%’

Data Filter

Column names in the the data_filter string are taken from the service data
key/value pairs. No keys are predefined by this specification.

If values are specified as numeric values and not in single quotes the service data
will be converted from string to numeric for comparison.

Some examples are:

• source = ’RAL-LCG2’ OR destination = ’RAL-LCG2’

• RunningJobs >=1 AND RunningJobs <= 5

VO Filter

There is only one column name in the vo_filter string:

vo Virtual Organization - will often be used with the IN operator. This API
does not restrict the values of a VO - it might be a DNS name, a URN or
any other string.

Some examples are:

• VO IN (’cms’, ’atlas’)

• VO = ’dteam’

The list_services operations is overloaded: the last parameter the vo_filter
may be omitted. If it is omitted the VO filtering is perfomed on the VOs of the
contexts in the session. This is quite different from including the vo_filter
parameter with an empty string which means that there is no VO filtering.

saga-core-wg@ogf.org 11

GFD-R-P.91 SAGA Service Discovery API January 15, 2008

- CONSTRUCTOR
Purpose: create a new discoverer object
Format: CONSTRUCTOR (in session session,

out discoverer dis);
Inputs: session: session handle. If omitted the

default session will be used.
Outputs: dis: new discoverer object
Throws: NotImplemented

NoSuccess
Notes:

- DESTRUCTOR
Purpose: Destructor for discoverer object.
Format: DESTRUCTOR (in discoverer dis)
Inputs: dis: object to be destroyed
Outputs: -
Throws: -
Notes: -

- list_services
Purpose: return the set of services that pass the set of

specified filters
Format: list_services (in string service_filter,

in string data_filter,
in string vo_filter,
out array<service_description>

services);
Inputs: service_filter: filter on the basic service and

site attributes and on related
services

data_filter: filter on key/value pairs
associated with the service

vo_filter: filter on VOs associated with
the service

Outputs: -
Throws: NotImplemented

BadParameter
AuthorizationFailed
AuthenticationFailed
NoSuccess

Notes: - The last parameter, the vo_filter, may be
omitted. In this case an implicit VO filter is
constructed as the union of the VOs in the
contexts of the session.

saga-core-wg@ogf.org 12

GFD-R-P.91 SAGA Service Discovery API January 15, 2008

- if any filter has an invalid syntax, a
’BadParameter’ exception is thrown.

- if any filter uses invalid keys, a
’BadParameter’ exception is thrown. However
the data_filter never signals invalid
keys as there is no schema with permissible
key names.

class service description

The service description class implements the SAGA attribute interface and of-
fers getter methods for the user to obtain details of that service. The attributes
are based on those found in GLUE. In addition it has the methods listed below.

- get_url
Purpose: return the URL to contact the service
Format: get_url (out string url);
Inputs: -
Outputs: url: URL to contact the service
Throws: NotImplemented

DoesNotExist
NoSuccess

Notes: The URL may also be obtained using the
attribute interface.

- get_related_services
Purpose: return the set of related services
Format: get_related_services (out array<service_description>

services);
Inputs: -
Outputs: services: set of related

service_description objects
Throws: NotImplemented

NoSuccess
Notes: This function returns an array of

service_descriptions. Alternatively, the
attribute interface may be used to get the
uids of the related services.

- get_data

saga-core-wg@ogf.org 13

GFD-R-P.91 SAGA Service Discovery API January 15, 2008

Purpose: return a service_data object with the
ServiceData key/value pairs

Format: get_data (out service_data data);
Inputs: -
Outputs: data: a service_data object
Throws: NotImplemented

NoSuccess

class service data

The service data class implements the SAGA attribute interface and offers getter
methods for the user to read key/value pairs defined by the service publisher.
The service publisher is completely free to define his own key names. Access
to the keys and values is through the attribute interface. The class provides no
other methods. This class has no CONSTRUCTOR, as it can only be created
by calling get_service_data() on a service_description instance.

- DESTRUCTOR
Purpose: Destructor for service_data object.
Format: DESTRUCTOR (in service_data sd)
Inputs: sd object to be destroyed
Outputs: -
Throws: -
Notes: -

saga-core-wg@ogf.org 14

GFD-R-P.91 SAGA Service Discovery API January 15, 2008

2.4 Examples

This C++ example shows, using a possible C++ binding, how the SAGA service
discovery model can be used to retrieve services from the underlying information
system. All the SAGA job services (org.ogf.saga.service.job) with a name of
“CERN-PROD-rb” and owned by a VO in a context of the current session
and for which the “RunningJobs” parameter is greater than 10 are requested.
The service objects returned from the list_services call are then queried for
attributes and key/values using its getter methods. It would be more common to
issue a sufficiently precise query so that any service returned would be suitable
and then call get_url on the first service returned.

Code Example

1 #include <iostream>

2 #include <vector>

3 #include <string>

4 #include <saga.hpp>

5

6 using namespace std;

7

8 main() {

9 saga::sd::discoverer d (SAGA_DEFAULT_SESSION);

10 vector<string> attrib_names;

11 vector<string> attrib_values;

12 string svc_filter = "type = ’org.ogf.saga.service.job’

13 AND name = ’CERN-PROD-rb’";

14 string data_filter = "RunningJobs > 10";

15 vector<saga::sd::service_description> slist =

16 d.list_services(svc_filter, data_filter);

17 cout << "Total number of services found = " << slist.size()

18 << endl;

19 for (int i = 0; i < slist.size(); i++) {

20 cout << "SERVICE #" << i << endl;

21 attrib_names = slist[i].list_attributes();

22 for (int j = 0; j < attrib_names.size(); j++) {

23 cout << " " << attrib_names[j] << " = " <<

24 slist[i].get_attribute(attrib_names[j]) << endl;

25 }

26 }

27 }

saga-core-wg@ogf.org 15

GFD-R-P.91 SAGA Service Discovery API January 15, 2008

This C example is similar to the C++ one above but this time includes the VO
filter parameter. This is just an extract from a possible C binding.

Code Example

1 SAGA_SD_Discoverer *sd =

2 SAGA_SD_create_discoverer(SAGA_DEFAULT_SESSION);

3

4 if (sd == NULL) {

5 fprintf(stderr, "Could not create SAGA SD object: %s",

6 SAGA_Session_get_error(SAGA_DEFAULT_SESSION));

7 return -1;

8 }

9

10 char service_filter[] = "type = ’org.ogf.saga.service.job’

11 AND name = ’CERN-PROD-rb’";

12 char vo_filter[] = "VO IN (’atlas’, ’dteam’)";

13 char data_filter[] = "RunningJobs > 10";

14

15 SAGA_SD_ServiceDescription *slist = SAGA_SD_list_services(

16 sd, service_filter, data_filter, vo_filter);

17

18 printf("Total number of services found : %d\n", slist->size);

19

20 for (int i = 0; i < slist->size; i++) {

21 printf("SERVICE #%d\n", i);

22 SAGA_SD_Attribute *keys = SAGA_SD_list_attributes(slist[i]);

23 for (int j = 0; j < keys->size; j++) {

24 printf(" %s = %s\n", key->names[j],

25 SAGA_SD_get_attribute(slist[i], key->names[j]));

26 }

27 SAGA_SD_free_attributes(keys);

28 }

29 SAGA_SD_free_services(slist);

saga-core-wg@ogf.org 16

GFD-R-P.91 Intellectual Property Issues January 15, 2008

3 Intellectual Property Issues

3.1 Contributors

This document is the result of the joint efforts of several contributors. The au-
thors listed here and on the title page are those committed to taking permanent
stewardship for this document. They can be contacted in the future for inquiries
about this document.

Steve Fisher A Paventhan
s.m.fisher@rl.ac.uk paventhan@rl.ac.uk
Rutherford Appleton Lab Rutherford Appleton Lab
Chilton Chilton
Didcot Didcot
Oxon Oxon
OX11 0QX OX11 0QX
UK UK

We wish to thank Pascal Kleijer (NEC Corporation) and Andre Merzky (Vrije
Universiteit, Amsterdam) for making written comments on earlier drafts and
encouraging us to be true to the SAGA style.

3.2 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which
any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover tech-
nology that may be required to practice this recommendation. Please address
the information to the OGF Executive Director.

saga-core-wg@ogf.org 17

GFD-R-P.91 Intellectual Property Issues January 15, 2008

3.3 Disclaimer

This document and the information contained herein is provided on an ”As
Is” basis and the OGF disclaims all warranties, express or implied, including
but not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

3.4 Full Copyright Notice

Copyright (C) Open Grid Forum (2007-2008). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the OGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the OGF Document process must
be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

saga-core-wg@ogf.org 18

GFD-R-P.91 References January 15, 2008

References

[1] S. Andreozzi et al. GLUE Schema Specification version 1.3. OGF:https:
//forge.gridforum.org/sf/go/doc14185?nav=1, 2007.

[2] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, A. Merzky, J. Shalf,
and C. Smith. A Simple API for Grid Applications (SAGA). Grid Forum
Document GFD.90, 2007. Global Grid Forum.

[3] B. Konya, L. Field, and S. Andreozzi. GLUE working group of the OGF.
http://forge.gridforum.org/sf/projects/glue-wg.

[4] A. Merzky and S. Jha. A Collection of Use Cases for a Simple API for Grid
Applications. Grid Forum Document GFD.70, 2006. Global Grid Forum.

[5] A. Merzky and S. Jha. A Requirements Analysis for a Simple API for Grid
Applications. Grid Forum Document GFD.71, 2006. Global Grid Forum.

saga-core-wg@ogf.org 19

OGF: https://forge.gridforum.org/sf/go/doc14185?nav=1
OGF: https://forge.gridforum.org/sf/go/doc14185?nav=1
http://forge.gridforum.org/sf/projects/glue-wg

	Introduction
	Notational Conventions
	Security Considerations

	SAGA Service Discovery API
	Introduction
	Specification
	Specification Details
	Examples

	Intellectual Property Issues
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice

	References

