GWD-1.71 Shantenu Jha, University College London
SAGA-RG Andre Merzky, Vrije Universiteit, Amsterdam

May 09 2006

A Requirements Analysis for a Simple API for Grid
Applications

Status of This Document

This document provides information to the GGF Applications Area in the Grid
Standards council. It does not define any standards or technical recommenda-
tions. Distribution is unlimited.

Copyright Notice
Copyright © Global Grid Forum (2006). All Rights Reserved.

Abstract

This document distills the use cases [6] received by the Simple API for Grid
Applications research group (SAGA-RG) and extracts the salient features into
a set of requirements for the API In addition to the requirements drawn from
the use cases, by analysing related ongoing developments in the grid community,
this document tries to define further the scope and requirements of any simple
API for applications.

Contents

1__Introductionl 2
[1.1 Target Audience| L 3

2 Requirements from SAGA Use Cases| 3
2.1 Use Casesin Detaall., 5
2.2 Functional Areas covered by the Use Cases| 8
2.3 Non-Functional Areas covered by the Use Cases|. 12

13 Requirements from Other Implementations| 15
BITGAT . . . 15
3.2 CoG /pyGlobus| 17
8.3 RealityGrid| 18

[3.4 gLite (EGEE)|. 19

GWD-1.71 May 09 2006

[4 Infrastructure Requirements Assumptions| 20
[4.1 Relation to Other GGF Groups| 20
[4.2 Relation to Major Grid Middleware|. 24
4.3 Language binding Requirements| 25
4.4 Portability].o oo 26

26

[6 Security Considerations| 27

[7__Contributors| 27

[8 Intellectual Property Statement| 27

[0 Disclaimer] 28

(10 Full Copyright Notice| 28

[References| 28

1 Introduction

The GGF’s SAGA Research Group{] strives to define a high level API that
addresses directly the need of application developers. This document outlines
the main features that such an API should capture and in the process guides
the scope, granularity and design of such an API. The bulk of these features
are derived from an analysis of the use cases that the SAGA-RG receieved [0];
the remaining features discussed are derived from an analysis of the status and
trends in related areas of grid computing.

A useful though informal way of understanding SAGA’s aim and scope is to
think of the MPI standard. We believe that SAGA will do for grid applications
what MPI did for parallel applications: it will extract the correct semantics and
right level of abstraction, so as to permit the writing of portable applications
(across different middlewares) using a simple, minimally complete, consistent,
uniform set of function calls and thus be widely usable. All this, while at
the same time enabling the application to be coded in a manner that keeps it
independent of the underlying infrastructural details.

It is also very useful to mention explicitly that SAGA API is for coding against
a middleware and not for coding middleware directly. Admittedly, the term
application is an overloaded term and means different things to different people,
however for the purposes of this document (and understanding SAGA in general)
it is useful to remember that the applications in scope and of interest to SAGA

IThe group is currently undergoing a transformation: the SAGA RG is changing focus to
be an umbrella group, tasked primarily with spawning smaller, focussed working groups which
in turn will be ultimately responsible for the API. The umbrella research group will ensure
a consistent look and feel across the WG and in will addition coordinate SAGA’s activities
with other groups within the GGF.

saga-rgggf .org 2

GWD-1.71 May 09 2006

as well as being potential users of SAGA are those most typically used by the
end-user.

This document distills the use cases [6] received by the Simple API for Grid
Applications research group (SAGA-RG) and extracts the salient features into
a set of requirements for the APlﬂ In addition to the requirements drawn from
the use cases, by analysing related ongoing developments in the grid community,
this document tries to define further the scope and requirements of any simple
API for applications.

This document is divided into three main sections. In Section [l the salient
points and primary conclusions from the submitted use cases are presented.
We then change perspectives and utilise the use cases to motivate a discussion
of functional and non-functional requirement areas of relevance. The aim of
this section is to capture and prioritize the functional and non-functional areas
which in turn guide the design and implementation of the SAGA API. Section [3]
contains an analysis and discusses the main lessons learnt from projects that
implemented frameworks that are based upon the SAGA philosophy of grid en-
abling applications via user-level API. This section also discusses gLite which
is an instance of a distinct approach to programming applications for grid en-
vironments. A discussion of SAGA’s relation vis-a-vis other GGF groups and
middleware development projects is presented in Section [d] This section closes
with remarks on portability and language binding issues relevant to SAGA.

As alluded to, the development of the API is guided by the use cases received;
however it is important to realize that there is still a need for more use cases,
especially from non-academic projects and application developers. These use
cases in turn may possibily influence the design of future versions of SAGA.

1.1 Target Audience

The document targets primarily the SAGA Research Group, and is supposed to
both document and guide the work performed in the group. In particular, the
scope of the SAGA API is primarily derived from the findings in this document.
The target audience however, is not confined to the SAGA Research Group. It
is also instructive for designers, developers and implementors of independent
efforts such as gLite [2], Superscalar [I0, I1] and GAT [I].

2 Requirements from SAGA Use Cases

The SAGA Research Group elicited a number of use cases to guide its API
specification process. These use cases are published as GGF document “GGF

2These requirements are supposed to drive the API development, however given that the
group has had a design team put together a strawman of the API, which has been well received,
this document will instead allow a sanity check of the strawman.

saga-rgggf .org 3

GWD-1.71 May 09 2006

SAGA-RG Use Cases” [6]. This section discusses the use case template, main
features of the use cases, and then analyses the implications for the SAGA API.

Deriving Requirements: Some General Remarks

It was a rather simple exercise to derive the set of requirements for most of
the considered use cases. This speaks, we think, for both the design of the use
case templates and of the work the use case authors took to provide the use
cases. The next subsection 2.1] enumerates the functional and non-functional
areas and annotates them — which helps the interpretation of the less obvious
requirements.

Subsections 2.2] and [2.3] list the requirements — both functional and non-functio-
nal — derived from an analysis of the use cases and discusses them, from which
a set of recommendations for the SAGA API design are derived.

A histogram of the functional and non-functional areas from the use cases is pre-
sented in Table. The frequency count needs careful interpretation though.
For example, the frequency is not weighted by importance; sometimes an area is
very central to a use case, sometimes it is barely touched, but both are treated
the same for the histogram. Also not reflected in the frequency count is the fact
that an area is sometimes not explicitly mentioned, but might well be useful to
the use case (e.g., ’events’ for visualization use cases). There is also the issue
that some areas have some level of functional overlaps (i.e., steering and events).

The SAGA-RG received nine use cases from the GridRPC Working Group; for
the sake of this analysis, these have been pooled together into a single use
case, due to their similarity. Hence, the respective areas are counted only once.
Currently, a dedicated design team in working in the SAGA-RG to derive more
detailed requirements for an integration of RPC into SAGA, and to draft a RPC
focused strawman API. are counted only once.

Functional Requirement versus Non-functional Requirements:

The separation into functional and non-functional areas is based more on a
classification scheme than a rigid definition. Thus, as with most classification
schemes, it is not water tight and there is scope for some ambiguity about which
category a particular requirement might fall into. Functional requirements are
loosely speaking those for which a direct API call (or calls) exists, e.g., job
management. Non-functional requirements do not have explicit call(s) associ-
ated with them, though they may influence the syntax and semantics as well as
the design and implementation of specific API calls and maybe even the API as
a whole. For example, the requirement for security and bounds on Quality-of-
service (QoS), do not require explicit calls, but do need to be supported by the
API. Auditing is an example of a possible requirement that could fall into both
categories.

Requirement Levels and RFC 2119:
The use of the requirement levels from RFC 2119 [3], such as “must”, “should”,

saga-rgQggf .org 4

GWD-1.71 May 09 2006

“may”, and their negations, has been investigated in the course of writing this
document. The authors, however decided not to use these terms as they were
found to be not appropriate for expressing different levels of requirements on
a technical (here: API) specification. The key words from RFC 2119 have
been defined for use within a specification, and they only make sense in such a
context. In the following, only the word “should” is used to express whether or
not a certain functional or non-functional property should be met by a SAGA
specification.

2.1 Use Cases in Detail
2.1.1 The SAGA Use Case Template

The use case template was aimed at an audience that consisted of projects
as well as specific applications, that had either developed APIs/interfaces to
facilitate grid applications, or those that felt that a SAGA like API would make
grid-enabling applications easier, robust and extensible. The use case template
was drafted so as to facilitate the extraction of information that would inform
the initial scope and design of a SAGA API. After initially gathering general
information about the projects and applications of interest, the template sought
information on actual usage scenarios of the applications. Information on the
typical users and resources required by the applications was also requested.
Resources in this context ranged from software and hardware constraints to
services required for running the application in a distributed environment.

The issues of security, performance, typical resource selection and runtime en-
vironments were queried. The audience was then asked to enumerate all grid
technologies used and importantly were asked how often the applications in
scope were used in a grid-context. Finally the respondents were asked to pro-
vide pseudo-code for some prototypical API calls that would illustrate their
requirements.

The usecases are archived and online accessable at the GGF Use Case Reposi-
tory [], and also published as an information GGF document [0].

2.1.2 CoreGrid Use Case

The use case has a broad scope, and explicitly lists both functional and non
functional areas which are expected to be covered by the SAGA API. Resource
discovery and selection are listed, but interpreted as being required at the mid-
dleware level and not at the application level. Integration with commodity
techniques, however is a noteworthy additional requirement. Also noteworthy
is the requirement for synchronous event notification.

saga-rgggf .org)

GWD-1.71 May 09 2006

2.1.3 Coastal Modeling Use Case

Relative to CoreGrid this presents a rather specific usage scenario. It describes
an ongoing project and lists a wide range of requirements. It is not easy to pri-
oritize the relative importance of the many requirements. “Must have” require-
ments appear to be those of data access, management, and remote visualization.
There is a stated requirement for QoS — although it is somewhat unclear if they
need to be exposed at the API level, e.g., the API might possibly provide a
means for specification, but not necessarily negotiation of QoS.

2.1.4 DRMAA Use Case

Although the two have very different scopes, the DRMAA Working Group [5, 9]
and SAGA Research Group share a common aim — that of providing a high
level API. That motivates the SAGA API to adhere to the API structure de-
fined in DRMAA for job submission. It further motivates the consideration
of bulk operations as a major performance obstacle in distributed systems. It
describes bulk job submission, but the argumentation of the use case authors
seems applicable to other bulk operations than just job submission, as well.

2.1.5 DiVA Use Case

This very elaborate use case describes the design of a grid distributed compo-
nent system, which can be assembled into a visualization pipeline. Security,
QoS, resource and service discovery, and data streaming are the cornerstones
of the DiVA requirements. There is an implicit requirement for asynchronous
operations and notifications (although both could be provided outside SAGA).
It is interesting to note, that if the performance requirements of the use case
were fully respected in SAGA, it would imply a very low latency throughput
overhead of the API implementation (zero copy), at least for streaming and
event notification.

2.1.6 GridLab Use Case

Notable for this use case is the paradigm of self-awareness for a Grid application:
the application can handle itself as a job instance, clone itself, spawn children
etc. (saga::self::get-job-description). The use case further motivates the
use of application level monitoring and asynchronous notification.

2.1.7 KoDaVis Use Case

This use case focusses primarily on data management and visualization. How-
ever, interesting is the expressed need for an application level information ser-

saga-rgggf .org 6

GWD-1.71 May 09 2006

vice. Interstingly, this appears to be the only use case (UC) that has asked
explicitly for information services.

2.1.8 Medical Imaging Use Case

The GEMSS use case is unique amongst received UC as it focuses on resource
reservation, management, advanced reservation and QoS negotiations. These
are all advanced requirements, and traditionally not often exposed traditionally
at the API level.

2.1.9 RealityGrid Use Case

The RealityGrid use case adds important non-functional requirements, such as
APT stability, scalability, and the need to support a wide range of Grid middle-
ware. The single main functional requirement is computational steering. Com-
putational steering however, requires several other functions, e.g., migrations,
checkpointing and monitoring. Additional functional areas are job submission
and data management.

2.1.10 Superscalar Use Case

Superscalar is special in the respect that it describes a middleware or tool set,
not a scientific application. However, its requirements match the level and
scope of the other use cases very well, and focuses on job and data manage-
ment. Asynchronous and synchronous notification are prominent non-functional
requirements.

2.1.11 Visit Use Case

This use case focuses on application level steering and communication, whereby
large amounts of data are to be streamed between components. Asynchronous
operations and notification seem to add a lot of flexibility to that use case.

2.1.12 Visualization Service Use Case

The visualization service described in this use case opens a completely new
aspect for the SAGA API, as it describes the access to a custom remote service.
That functionality is comparable to the automatic creation of client side stubs
for a WSDL description. In some respect that area is covered by GridRPC like
methods (see below). However, interesting for SAGA are service and resource
discovery aspects, as well as steering and asynchronous notification.

saga-rgggf .org 7

GWD-1.71 May 09 2006

2.1.13 LSU Viz Service Use Case

The use case describes a block oriented message API with asynchronous notifi-
cation, and motivates its use for remote visualization of large data sets.

2.1.14 GridRPC (set of) Use Cases

The GridRPC working group in GGF applied the SAGA use case template to
a number (9) of their own use cases, and submitted those to the SAGA group.
In fact, these use cases match the SAGA problem space very well. As they are
very similar in terms of scope, they are, for the sake of this document, treated
together.

The use cases motivate (not surprisingly) the utilization of Remote Procedure
Calls for Grid applications. That goes along with a set of requirements for
asynchronous operations, resource discovery and data management.

2.2 Functional Areas covered by the Use Cases

The functional areas identified in the submitted use cases are:

1. Job Management: Submission and management of jobs. Individual
resources are not necessarily specified, or only identified by name and job
requirements.

2. Resource Management: Allows for fine grained description and selec-
tion (discovery) of resources to be used for job management.

3. Data Management: Management of files as entities (copy, move, ...),
does not include access to file contents, nor replica management.

4. Data Access: Access to contents of files
5. Logical Files: File replica management

6. Streams: Communication between running processes, with mechanisms
similar to BSD streams

7. Data Bases: Access to remote data bases, no particular schema implied

8. Events: Short message style events as used for inter process communica-
tion, synchronization etc.

9. Steering: Support for steering of parameters of remote applications

10. Information Services: Read and write capabilities to persistent infor-
mation repositories, supporting application specific information storage

11. Communication: Any means of communication not covered above, as
large data messages and RPC

saga-rgggf .org 8

GWD-1.71 May 09 2006

Functional Area #
Job Management 16
Resource Management 13
Data Management 12
Information Services 11
Data Access 10
Streams 10
Events 9
Communication 7
Steering 5
Logical Files 3
Data Bases 1

Table 1: Functional areas covered by the use cases, ranked by occurrences

2.2.1 Discussion of Functional Areas

Job Management: The scenarios from the use cases cover most importantly
job submission, and tracking of job status. Additionally, most use cases classify
this requirement as a “must have”.

Jobs in the use cases are often described by RSL or JSDL like languages. The
most commonly used attributes in addition to executable name and parame-
ters, are environment variables and input/output files (which sometimes require
staging).

A number of use cases expect the API to allow various actions performed on
the jobs, which mostly change their state, such as: suspend(), continue(),
kill(), signal (), and migrate().

o Job Submission and Management should be included in the very

first SAGA API.

Resource Management: A number of use cases need the specific capability
of being able to select resources. In addition some projects and applications also
need the ability to discover suitable resources, before selecting and submitting
to resources.

It is important to note that there are ongoing developments in resource man-
agement [§], that could make it more meaningful to keep resource management
out of the API for some applications (i.e. away from the application level). It
is illustrative to note for example that GridRPC and MPI do not provide an
interface for resource management and so one could in principle argue neither
should SAGA.

But based upon use cases received, it is currently felt that the ability to manage
resources is required (and as a “must have”) at the APT level in these use cases.

saga-rgggf .org 9

GWD-1.71 May 09 2006

e Resource discovery should be supported by the SAGA APIL

Data Management: Navigating remote file directories structures and ma-
nipulating the location of files in these structures are intrinsic parts of many
use cases. Simple operations such as 1list(), mkdir(), copy(), move(), and
remove () are required; sometimes find() and iterators for large directories
seem useful.

e Data Management should be supported by the SAGA APL

Data Access: In addition to the requirement of data management, access
to the content of individual remote files is often required. The trinity read
Jwrite/seek fulfills most of these use cases, however, some performance con-
siderations seem to imply other file access paradigms (although they are not
explicitly mentioned in the use cases received). SAGA should not however,
preclude efficient data access.

e FEfficient Data Access should be supported by the SAGA APL

Logical Files: Only few use cases requested the support of replica systems.
This was surprising, as replica systems seems to be well accepted in the grid
community, and are amongst the more stable and widely deployed elements
of todays grids. This might either reflect a bias in the use cases received, or
might be a consequence of the fact that the use cases authors are currently not
working with replica systems, but could possibly utilize them anyway, if the API
provided appropriate support. The set of capabilities however, expected from
replica systems is small, e.g., management of the set of replicas for each logical
file, including replication (creation of new replicas). The support for meta data
(and search on them) for logical files is also mentioned explicitly in some of the
use cases received.

As data replication features are amongst the most accepted grid paradigms, it
is recommended that at the very least, basic support for it be included, even if
it is not required by the majority of use cases.

e Data Replication should be supported by the SAGA APL

Information Services: A surprisingly large number of use cases asked for
the support of application level information repositories. Those included some
use cases which wanted to attach meta data to logical files. Others wanted
to exchange (and persistently store) application specific meta data. The meta
data in question seem to be mostly lists of simple key/value pairs — however,
the set of keys and the set of value types is not predetermined, and application
dependent.

saga-rgggf.org 10

GWD-1.71 May 09 2006

e Persistent storage of application specific information should be
supported by the SAGA APL

Streams: As a means of exchanging larger amounts of data between appli-
cations, BSD like streams seem to be the favorite paradigm listed in the use
cases. In particular the various remote visualization scenarios require support
for remote data streaming, which allows for simple end point authorization, and
handles fire walls and other grid specific problems transparently. Connection
setup (client/server bootstrapping) and read() /write() seems to serve most
use cases, however, asynchronous notification on incoming data (select) seem
crucial for several applications.

o Streaming of data should be supported by the SAGA API.

o Asynchronous notification should be supported by the SAGA APIL

At a more abstract level, most of the streaming use cases seem to exchange
messages at the application level, i.e., larger independent chunks of data with
intrinsic structure. One use case specifically requested support for messages
at the API level, and in fact, that paradigm would seemingly support (and
simplify) the other streaming use cases as well.

e Support for messages on top of the streaming API should be con-
sidered by the SAGA APL

Events and Steering: Along the same lines, various use cases benefit from
asynchronous and timely delivery of custom events — e.g., for synchronization of
multiple processes. Several use cases explicitly list steering as the usage scenario
for such events.

e Asynchronous notification should be supported by the SAGA APIL

o Application level event generation and delivery should be supported
by the SAGA APL

e Application steering should be supported by the SAGA API, but
more use cases would be useful.

Communication: The communication schemes above (streams, events, steer-
ing) support not all use cases with need of remote communication. Some of
the remote visualization use cases require a more high level communication
scheme than streams for data exchange (send/receive of large message buffers,

saga-rgggf.org 11

GWD-1.71 May 09 2006

see above). Also, a significant number of use cases are very specifically request-
ing support for GridRPC (these use cases have been submitted by the GridRPC
group in GGF). In this analysis, those requirements are subsumed in the ’Com-
munication’ area. However, apart from GridRPC it is currently not possible to
pinpoint more specific communication schemes which need supporting — more
use cases are required for this.

e GridRPC should be supported by the SAGA APIL

o Further communication schemes should be considered as additional
use cases are submitted to the group.

Data Bases: Only one use case requested API support for data base access,
and that included a very specific data base layout. We think that before SAGA
addresses data base access, more and more specific use cases are required.

e Data Base access does currently not require explicit support in the
SAGA APL

2.3 Non-Functional Areas covered by the Use Cases

The identified non-functional areas are listed below. They do not necessarily
need a representation in the API in the form of additional method calls — how-
ever, the API specification needs to be aware of these areas, and should allow
application to exploit these functionalities. Some areas, such as transactions,
may have no reflection in the API at all; others, such as tasks, may influence
the overall look and feel of the API.

1. Bulk Operations: Support large numbers of very similar or identical
remote operations efficiently

2. Security: Allow or require support for secure infrastructure (e.g., support
credential management)

3. Error: Have fine grained and verbose support for error handling, e.g., for
the sake of error recovery and debugging

4. Quality of Service: Support the notion of QoS on various levels, e.g.,
for deadline scheduling, bandwidth reservation etc.

5. Auditing: Allow for audit traces of all remote operations
6. Transactions: Support remote operations as transactions

7. Workflow: Include support for work flow on API level (e.g. allow to
specify job dependencies)

8. Asynchronous Operations: Allow for asynchronous operations

saga-rgggf.org 12

GWD-1.71 May 09 2006

Non-Functional Area
Error

Security

Auditing

QoS

Asynchronous Operations
Bulk Operations
Workflow

Transactions

_ =

ON[\?%@\][\DO’!:H:

Table 2: Non-Functional areas covered by the use cases, ranked by occurrences

2.3.1 Discussion of Non-Functional Areas

Asynchronous Operations: Although these areas are not amongst the most
requested, we consider them to be of importance. Asynchronous operations are
very crucial to remote operations, as those have usually no guaranteed and po-
tentially very long and varying response times — very slow responses are difficult
to distinguish from failures and timeouts. Grid applications definitely require
support for asynchronous calls.

o Asynchronous Operations should be supported by the APIL

It is prudent however, to not make every call asynchronous, but to have a clear
separation between asynchronous and synchronous calls. Having asynchronous
versions and synchronous versions which helps keep the complexity of the com-
monly used calls low, appears to be the right approach.

Bulk Operations: For bulk operations we received a very specific use case.
Also, many common distributed computing techniques (e.g. parameter sweeps)
can certainly benefit from bulk operations. Also, for many individual remote
operations, latencies and response time can add up to unreasonable long overall
response times — bulk operations (i.e., clustering of multiple remote requests
into a single one) are one way to avoid that. In the distributed community, bulk
operations and asynchronous method calls are well understood.

e Bulk Operations should be supported by the API.

Errors: support for good error reporting seems to be self-evident for every
API design. However, it seems particular important to distinguish several error
types. For illustration:

file.copy ("http://letalhost//tmp/file.dat", ".");

saga-rgggf.org 13

GWD-1.71 May 09 2006

The call above might fail for a plethora of reasons. However, it should be possible
to recover from some of them (e.g. service not available, timeout) by retrying
later, but it seems unlikely that it is possible to recover from the mis-spelling
(localhost — letalhost). Whether an error is recoverable or not, depends on
many things: the specific implementation of the API, the middleware it binds
to, the policy of the application etc.

e The error support of the API should allow for application level
error recovery strategies.

Security: Most use cases have at least some security requirements — however,
they are often not very specific, and mostly say “should be secure”. We think
that this reflects two points: firstly, users are willing to use whatever security
infrastructure is available and/or required; and secondly, users do not have much
experience with security, and are probably not willing to learn too much about
it, unless absolutely necessary.

o The SAGA API should be implementable on a variety of security
infrastructures.

e The SAGA API should expose only a minimum of security details,
if any at all.

SAGA might possibly target ACLs for files and name spaces. Unfortunately
however, at the time of writing (and development of version 1.0 of the SAGA
specification) it is still unclear how best to introduce and handle the issue of
security. Despite ongoing discussions with the security area in GGF, no clear
picture of either end user demands nor common middleware paradigms for secu-
rity emerged. We think this is a testament to the innate difficulty of the security
problem.

Auditing: Logging, bookkeeping, auditing and accounting are frequently ci-
ted as crucial for production level deployment of Grids, and are also listed in
several use cases. However, most use cases seem to require the existence of these
features at the implementation or middleware level, but do not seem not to need
access to them at the API level. More specific use cases would be required to
provide access to these features on API level.

o Auditing, logging and accounting should not be exposed in the API.

Workflow: Grids seem to provide optimal environments for complex work-
flows, and many projects and research groups are working both on workflow
specifications and execution environments. Workflow is also listed in a (small)

saga-rgggf .org 14

GWD-1.71 May 09 2006

number of SAGA use cases — however, a need for support of workflows at the
APT level seems not required by any of them right now. Instead, support for
workflow seems to be required on middleware level.

o Workflows do not require explicit support on API level.

Quality of Service: Several use cases specified a need for Quality-of-service
negotiations. The use cases present specific and varied constraints, e.g. the need
for specific time lines for remote executions to be kept, have specific bandwidth
requirements, requirements to remote operations reliability etc. However, the
diversity of QoS problems covered makes it difficult to come up with a conclusion
on how QoS should influence the API — e.g. many additional parameters could
be thought of for the file copy method to specify its QoS needs, but the same
could be said for all other calls, and the API would be cluttered in no time.

Given that there are at least three (strong) use cases however, that request some
form of Qos, the topic should definitely addressed at some point. Unless more
specific QoS use cases are available to SAGA however, QoS should be considered
as a future, generic extension to the API, e.g. as a set of QoS related attributes
to objects or tasks. Maybe a “QoS context” which would in turn prevent the
API from being cluttered is an option worth considering.

e QoS does mot require explicit support on API level. This issue
should be revisited for SAGA version 2.0.

Transactions: Surprisingly, not a single submitted use case placed an explicit
requirement of transactions for remote operations. Once again, this might just
be a reflection of the limited number (and scope) of use cases received.

e Transactions do not require explicit support at the API level.

3 Requirements from Other Implementations

A number of current and past projects in the area of Grid middleware and Grid
applications cover or touch the same area as the SAGA group. There exist a
number of APIs and interfaces, usually targeting a subset of the SAGA audience.

This section reviews these developments, and, from their experiences, derives a
set of non-functional requirements for the SAGA API specification.

3.1 GAT

The Grid Application Toolkit (GAT) is an application level Grid API, and tar-
gets a user group similar to SAGA. This section describes lessons learnt in

saga-rgggf.org 15

GWD-1.71 May 09 2006

the design process and from the implementation of the GAT. We derive several
points we feel should be used as requirements for SAGA, i.e., the ’lessons learnt’
in GAT. Given the similarities in the scope, the lessons learnt from GAT are
also applicable to SAGA — and thus we highlight several points that serve as
requirement for SAGA too.

3.1.1 GAT Design

The GAT API design followed an object oriented (OO) approach. It was felt
that a mapping of an OO API to procedural languages would be easier than
mapping a procedural API to OO languages. This proved a valid approach,
as the later implemented language bindings in both procedural (C) and OO
languages (C++, Java and Python), which are equally well accepted.

e The SAGA API Specification should be Object Oriented.

Also, the usage of asynchronous notification mapped very well to various lan-
guage bindings of GAT, and gave no unreasonable trouble to implementers. On
the other hand, they increased the simplicity and usability of the API signifi-
cantly (in fact, a major demand on the GAT today is to extend its asynchronous
capabilities).

e Asynchronous notification should be supported by the SAGA APIL

3.1.2 GAT API Scope

The scope of GAT API was derived from a very limited set of use cases internal
to the project. The final GAT API served these use cases very well, but to some
extent failed to enable additional use cases.

e The range of motivating use cases should be as wide as possible,
and as narrow as mecessary to agree on a finite scope.

The most heavily used parts of the API span File Management, Replica Man-
agement, Resource discovery and Job Submission, and the Advert Service. The
latter provides an interface to persistent storage for arbitrary information, and
also for serialized GAT objects.

o Application level persistent information exchange increases the
convenience of implementing Grid application scenarios signifi-
cantly.

Persistent information exchange was not derived from a specific use case, but
created in order to allow middleware independent, persistent exchange of custom

saga-rgggf.org 16

GWD-1.71 May 09 2006

information. It is well accepted by GAT users, and heavily used. However, the
GAT team learned that the learning curve for new paradigms must not be steep
— otherwise adoption is severely limited.

o Frequently used paradigms should be the most powerful ones.

e New paradigms should be the most simple ones.

3.1.3 GAT Implementation

The GAT is implemented in C and in Java, and provides wrappers around
the C implementation for bot C++ and Python. Adaptors (i.e., middleware
bindings) can be written in in C, C++ and Python (for the C implementation)
or Java (for the Java implementation). In particular the ability to provide
middleware bindings in various languages proved very useful. In respect to the
API specification, however, we did not encounter any facet which impacted the
implementability of the API significantly.

o Multiple language bindings for the API are ess