
GFD-R-P.XX Andre Merzky1

SAGA-RG

Version: 1.0 November 19, 2010

SAGA API Extension: Advert API

Status of This Document

This document provides information to the grid community, proposing a stan-
dard for an extension package to the Simple API for Grid Applications (SAGA).
That extension provides access to persistent storage for serialized SAGA objects,
and application level meta data (adverts). As SAGA extension, it depends upon
the SAGA Core API Specification [2]. This document is supposed to be used
as input to the definition of language specific bindings for this API extension,
and as reference for implementors of these language bindings. Distribution of
this document is unlimited.

Copyright Notice

Copyright c© Open Grid Forum (2007-2010). All Rights Reserved.

Abstract

This document specifies an Advert API extension to the Simple API for Grid
Applications (SAGA), a high level, application-oriented API for grid application
development. This Advert API is motivated by a number of use cases collected
by the OGF SAGA Research Group in GFD.70 [4], and by requirements derived
from these use cases, as specified in GFD.71 [5]). It allows to persistently store
application specific meta data in a name space hierarchy, along with serialized
saga::object instances.

1editor

GFD-R-P.XX November 19, 2010

Contents

1 Introduction 3

1.1 Notational Conventions . 3

1.2 Security Considerations . 3

2 SAGA Advert API 5

2.1 Introduction . 5

2.2 Specification . 9

2.3 Specification Details . 12

3 Example Code 22

3.1 Advertising Jobs . 22

3.2 Advertising Resources . 23

3.3 Master-Worker Example . 25

4 Intellectual Property Issues 30

4.1 Contributors . 30

4.2 Intellectual Property Statement 30

4.3 Disclaimer . 31

4.4 Full Copyright Notice . 31

References 32

saga-wg@ogf.org 2

GFD-R-P.XX Introduction November 19, 2010

1 Introduction

A significant number of SAGA use cases [4] ask for the possibility to persistently
store application level meta data1. In difference to data storage in files, these
meta data are usually small, and structured as key-value-pairs. The main use
case for this API extension is that an application stores some state information,
and that these state information are either used by other applications, or by a
later running instance of the same application.

For example, an application which allows to stream data (i.e. uses the SAGA
Stream API [2]), may store its saga::stream::service endpoint URL as an
advert, along with information about the protocol to be used, and another
application which wants to connect to the first one may obtain the service object,
and the protocol information, from the advert service. This allows, amongst
others, for simple and environment independent bootstrapping of distributed
ensembles of applications. The persistent nature of the advert service also allows
applications to cooperate even if their actual application run time does not
overlap.

Adverts are defined as an entry in the adverts name space, i.e. as an entry in an
saga::advert::directory. Similar to saga::replica::logical_file, each
advert can have meta data attached (i.e. has key-value based attributes). As
described above, an saga::advert can also store one (serialized) saga::object
instance. In some sense, that object instance can be considered to be the content
of the advert, and the attributes can be considered the meta data of the advert,
usually describing the content. Neither element needs to exist however – even
completely empty adverts can be useful in some circumstances, e.g. to simply
flag specific conditions.

1.1 Notational Conventions

In structure, notation and conventions, this documents follows those of the
SAGA Core API specification [2], unless noted otherwise.

1.2 Security Considerations

As the SAGA API is to be implemented on different types of Grid (and non-
Grid) middleware, it does not specify a single security model, but rather provides

1The distinction between data and meta data is usually not very well defined. In this
document, we refer to meta data as small pieces of information which are used to manage the
overall functionality of the application. They are, usually, not the data which are the object of
the applications core algorithms. In particular, for the purpose of this document, we consider
meta data not to be binary data.

saga-wg@ogf.org 3

GFD-R-P.XX Introduction November 19, 2010

hooks to interface to various security models – see the documentation of the
saga::context class in the SAGA Core API specification [2] for details.

A SAGA implementation is considered secure if and only if it fully supports
(i.e. implements) the security models of the middleware layers it builds upon,
and neither provides any (intentional or unintentional) means to by-pass these
security models, nor weakens these security models’ policies in any way.

The implementations of advert services (the “backend” services to this API),
need to take security concerns into account, because such a service might cause
leaks of user (meta) data beyond the runtime of the applications using this API.
This is the same risk as with storage and file systems, to which the SAGA core
API provides an API. Unlike with established file systems, however, the risks
associated with advert services might be less obvious to their implementors.

saga-wg@ogf.org 4

GFD-R-P.XX SAGA Advert API November 19, 2010

2 SAGA Advert API

2.1 Introduction

Several SAGA use cases [4], and also several current and past SAGA and GAT [1]
base projects, declared the need for a simple interface to storage of small sets of
persistent application data. Further, as distributed applications have an inher-
ent need of coordination [3], the state for SAGA object instances is considered
to count amongst those information. The advert API extension to SAGA, which
is presented and specified in this document, is designed to accommodate those
needs.

In its core, the advert package represents a saga::namespace derivate which
allows to store, search and retrieve saga::attribute sets and saga::object

derivates in its leave nodes. The notion of namespace is repeatedly used through-
out the SAGA API [2], as is the notion of attributes. By combining both, the
structure of the advert API package should actually be immediately clear. The
novel addition to the package is the ability to store SAGA object instances,
which should be considering as serialized representation of the the respective
object’s state.

The potential use cases of the API package are virtually endless, and as imple-
mentation of the API in SAGA and other APIs already exist since a number of
years, the paradigm has already been proven to be incredibly useful for the de-
velopment of distributed applications. An example applications is thus included
to (a) demonstrate that usefulness, and (b) illustrate the structure and purpose
of the API. The complete application code can be found in section 3.

Example: Master/Slave Application with Advert Registries

Assume a distributed application wants to employ the Master/Slave paradigm.
The Master can then, after creating the slave jobs, publish those in a separate
advert directory, which thus serves as this master’s job registry. Each job advert
contains the serialized job instance. Further, the master can publish work items
in yet another advert directory, and assign job id’s to each work item. That
second advert directory acts as a work item queue. The work item adverts
contain (a) a serialized SAGA file instance representing the work data, (b) the
id of the job assigned to that work item, and (c) the state of that item (e.g.
’assigned’). After all work items have been created and assigned, the jobs are
run(), and can start to pick up work items.

The started slave processes search the work item registry for items assigned
to them, by doing a find() on the advert directory, with a pattern which
specifies ’work_id=<my_id>’, with my_id being their own job id. They then

saga-wg@ogf.org 5

GFD-R-P.XX SAGA Advert API November 19, 2010

work on each item, marking it as ’accepted’ when starting the work, and as
’completed’ when done.

A separate master process could decide to check the overall progress of the work.
To do that, it retrieves all job and work item adverts, and checks the respective
status: for the jobs, it retrieves the job instances from the job adverts, and calls
get_state() on them; for the work items, it checks the ’work_state’ attribute
of the work item adverts. If jobs are in a final state, and all work items are
completed, the master can safely purge the advert directories.

That example obviously is very simplistic in respect to scheduling of work items,
and also in respect to error recovery, but is nevertheless fully functional. Cre-
ating an application with similar functionality without the help of the advert
service requires significantly more, and also more complex, operations. In par-
ticular, the application is immediately resilient against master failures: once
the job and work item registries exist, they are persistent, and can be utilized
by any application component with the respective permissions. Further, the
communication between the individual application components (i.e. processes)
is immediately asynchronous, secure, and persistent (no ’messages’ get lost).
Also, the registries allow to easily infer the overall state of the distributed ap-
plication. Finally, the communication via the advert service completely solves
the application bootstrapping problem: there is no need for any application com-
ponent to directly contact any other component. Thus, no component needs to
know where any other component is actually being executed. The only shared
information are the URLs of the job and work item registries (or, in our code
base, the single URL of the directory containing these registries).

The complete C++ source code for the example described above is listed in
appendix 3, along with additional shorter code examples.

2.1.1 Classes

The SAGA Advert API consists of two classes: the advert::advert class,
which inherits namespace::entry and encapsulates the application information
to be stored persistently; and the advert::directory class, which inherits
the namespace::directory and represents the directory adverts are organized
in. The advert::advert class has three additional methods, store_object(),
retrieve_object() and delete_object(), which allow to associate a SAGA
object instance with that specific advert. SAGA object instances of those classes
which are defined in either the SAGA Core API Specification [2], or in one of
the specifications for SAGA API extension packages. In either case, the classes
to be serialized MUST inherit the saga::object interface from [2].

Storing and retrieving a SAGA object is semantically equivalent to the object.clone()
call, as specified in [2], with the only difference that the cloning can now poten-

saga-wg@ogf.org 6

GFD-R-P.XX SAGA Advert API November 19, 2010

tially span over completely independent and different application instances.

The advert::directory has an overloaded find() method, which allows to
also search object types, and for meta data pattern (i.e. attribute patterns), sim-
ilar to the find of the SAGA replica package. Additionally, the advert::flags

enum is inherited from the SAGA namespace package, and extended by the
Truncate flag which empties both the associated object and the attributes of
the advert to be opened.

Note that the advert.retrieve_object() method is able to return different
object types. It thus uses the same type templatization signature as employed in
the SAGA core specification, for example for the task.get_result() method.
Language bindings MAY utilize the same technique for advert.store_object(),
if the argument’s type cannot automatically inferred in that language.

Both the advert::directory and the advert::advert class implement the
saga::monitorable (see [2]) interface, and provide an (extensible) number of
metrics to be monitored.

2.1.2 Advert State Attributes and Object Serialization

As SAGA is an API specification, it is generally true that interoperability on
backend level can neither be specified, nor enforced, by SAGA. This document
is thus silent about the exact mechanism used to implement the object serial-
ization, and its representation in the backend. It is clear, however, that the
implementation MUST ensure that enough information are stored so that an
equivalent object can be recreated when calling retrieve_object().

SAGA objects usually live in a specific SAGA session, which has a set of as-
sociated SAGA contexts. The serialization MUST NOT attempt to serialize
session and contexts. Instead, the objects get deserialized in the session of the
deserializing advert instance. That may result in objects which cannot function
due to missing security contexts. A session serialization could, however, also not
guarantee functional credentials. Further, both the package semantics and the
usability would be significantly complicated when attempting to cover session
and context serialization automatically.

For those use cases where session and context persistence is essential, that se-
mantics can always achieved manually, by

• serializing the required contexts,

• creating an empty session on deserialization side,

• filling that session with deserialized contexts,

• opening adverts in that session,

saga-wg@ogf.org 7

GFD-R-P.XX SAGA Advert API November 19, 2010

• retrieving then the required SAGA objects from that advert.

While that process seems tedious, it seamlessly fits the overall advert pack-
age semantics. We also believe that only a minority of use cases require that
semantics.

2.1.3 Advert Persistency and Lifetime Management

Adverts have, by default, an unspecified lifetime, and can thus in particular
survive the application which created the advert. It should be noted that this
can, however, lead to garbage, i.e. to an increasing number of entries which are
not needed anymore. To support user and system level garbage collection, the
set_ttl (int) method on the advert::entry and advert::directory classes
can be used to specify a minimal advert lifetime (time-to-live, ttl) – beyond that
time, the advert or advert directory will be considered as expired, or garbage,
and MUST be discarded by the backend. specific application instance only.
However, advert directories will not expire as long as they contain valid entries
or subdirectories.

Note that, as advert directories and entries inherit from the saga::namespace

package from [2], they both have a last_modified property. In general it should
hold that the expiration time equals the last_modified time plus the specified
ttl.

If the ttl of an open advert or advert directory is expired, the result of any
call accessing that advert MUST throw a ’IncorrectState’ exception. Any
attempt to open an expired advert MUST result in a ’DoesNotExist’ exception.

If no ttl is defined on an advert or advert directory, it is assumed to never to
expire.

2.1.4 Advert URLs

The exact rendering of the advert namespace is up to the respective implemen-
tation, and it is thus not specified in this document how valid URLs are formed
(i.e. what schemas are supported). Implementations SHOULD, however, strive
to support the generic URL schema ’any’, as motivated in [2]. Otherwise, the
rules specified for file system URLs in [2] SHOULD be followed.

2.1.5 Implementation Interoperability

The SAGA is, as API specification, generally silent about backend interoper-
ability. We expect however, that implementations of the advert API extension

saga-wg@ogf.org 8

GFD-R-P.XX SAGA Advert API November 19, 2010

can potentially be interoperable, even across different programming languages,
in the sense that adverts attributes and associated SAGA objects can be stored
in one implementation, in one programming language, and be retrieved com-
pletely, and as fully functional SAGA object instances, in another programming
language. One way to achieve that interoperability would be to specify a serial-
ization scheme, and to define the minimal set of object state attributes required
to reinstantiate a SAGA object. While that is certainly possible, it is out of
scope for this document, and should be addressed in a different specification.

2.2 Specification

package saga.advert

{

enum flags : extends saga::namespace::flags

{

None = 0, // from saga::namespace

Overwrite = 1, // from saga::namespace

Recursive = 2, // from saga::namespace

Dereference = 4, // from saga::namespace

Create = 8, // from saga::namespace

Exclusive = 16, // from saga::namespace

Lock = 32, // from saga::namespace

CreateParents = 64, // from saga::namespace

Truncate = 128,

Read = 512, // from saga::namespace

Write = 1024, // from saga::namespace

ReadWrite = 1536 // from saga::namespace

}

class directory : extends saga::ns_directory

extends saga::attributes

extends saga::monitorable

// from ns_directory saga::ns_entry

// from ns_entry saga::object

// from ns_entry saga::async

// from ns_entry saga::permissions

// from object saga::error_handler

{

CONSTRUCTOR (in session session,

in string url,

in int flags = Read,

out directory obj);

saga-wg@ogf.org 9

GFD-R-P.XX SAGA Advert API November 19, 2010

DESTRUCTOR (in directory obj);

// set/get time to live

set_ttl (in int ttl);

get_ttl (out int ttl);

+

+ set_ttl (in url name,

+ in int ttl);

+ get_ttl (in url name,

+ out int ttl);

// find adverts based on name, object type, and meta data

find (in string name_pattern,

in array<string> attr_pattern,

in saga::object::type type = 0,

in int flags = Recursive,

out array<saga::url> names);

// Attributes (extensible):

// Metrics (extensible):

//

// name: advert_directory.attribute

// desc: fires if any attribute on that directory

// gets added, deleted, or changed

// mode: ReadOnly

// unit: 1

// type: String

// value: name of attribute triggering the event

// notes: -

//

// name: advert_directory.change

// desc: fires if any advert or directory within this

// directory changes

// mode: ReadOnly

// unit: 1

// type: String

// value: name of advert or directory triggering the

// event

// notes: - any metric firing on an advert or directory

// causes the ’change’ metric of its parent

// directory to fire.

//

// name: advert_directory.create

// desc: fires if any advert or directory within this

// directory gets created

saga-wg@ogf.org 10

GFD-R-P.XX SAGA Advert API November 19, 2010

// mode: ReadOnly

// unit: 1

// type: String

// value: name of advert or directory triggering the

// event

// notes: -

//

// name: advert_directory.delete

// desc: fires if any advert or directory within this

// directory gets deleted

// mode: ReadOnly

// unit: 1

// type: String

// value: name of advert or directory triggering the

// event

// notes: -

//

// name: advert_directory.ttl

// desc: fires when the directory’s ttl expires

// mode: ReadOnly

// unit: 1

// type: Trigger

// value: -

// notes: -

}

class entry : extends saga::ns_entry

extends saga::attributes

extends saga::monitorable

// from ns_entry saga::object

// from ns_entry saga::async

// from ns_entry saga::permissions

// from object saga::error_handler

{

CONSTRUCTOR (in session session,

in string url,

in int flags = Read,

out entry obj);

DESTRUCTOR (in entry obj);

// set/get time to live

set_ttl (in int ttl);

get_ttl (out int ttl);

// attach saga::object instances

saga-wg@ogf.org 11

GFD-R-P.XX SAGA Advert API November 19, 2010

store_object (in saga::object content);

retrieve_object <type>

(out saga::object content);

delete_object (void);

// Attributes (extensible):

// Metrics (extensible):

//

// name: advert.attribute

// desc: fires if any attribute on that advert

// gets added, deleted, or changed

// mode: ReadOnly

// unit: 1

// type: String

// value: name of attribute triggering the event

// notes: -

//

// name: advert.object

// desc: fires if the objet attachement of this

// advert changes

// mode: ReadOnly

// unit: 1

// type: Trigger

// value: -

// notes: -

//

// name: advert.ttl

// desc: fires when the advert’s ttl expires

// mode: ReadOnly

// unit: 1

// type: Trigger

// value: -

// notes: -

}

}

2.3 Specification Details

2.3.1 Enum flags

The flags describe the properties of several operations on advert directories and
entries. This package inherits the flags from the namespace package, and uses

saga-wg@ogf.org 12

GFD-R-P.XX SAGA Advert API November 19, 2010

the same flag semantics unless specified otherwise. The Truncate flags is added,
which is to be used when opening an advert::entry instance shall completely
empty that entry. The Truncate flag does not imply a reset of the creation time,
but it causes the entry’s ttl counter to be restarted. On advert directories, the
Truncate flags causes the attributes on that directory instances to be purged,
and any associated SAGA object instance to be removed, but leaves the entries
and subdirectories of this instance untouched.

2.3.2 Class advert::directory

The advert::directory class follows the purpose and semantics of the inher-
ited saga::namespace::directory class. It additionally inherits the saga::at-
tribute interface, which allows the SAGA user to store arbitrary key-value pairs
on the advert directory.

The class has two additional methods to query and set the directory’s ttl. If
that time is passed (i.e. the directory’s creation-time last-modification-time
plus its ttl is smaller than ’now’), the directory is considered to be expired. It
MUST, however, be kept in a usable state as long as it (or its subdirs) contains
any entries which are not expired. The ttl counter (re)starts on creation time,
whenever the directory is being modified (i.e. when any directory attributes are
changed, when entries or subdirectories are added, renamed or removed), and
when calling set_ttl().

Another namespace method, find(), is overloaded, and allows to extends the
search pattern to (a) the type of objects associated with adverts, and (b) the
attributes associated with adverts.

- CONSTRUCTOR

Purpose: create the object

Format: CONSTRUCTOR (in session s,

in saga::url name,

in int flags = Read,

out directory obj)

Inputs: s: session handle

name: location of directory

flags: open mode

InOuts: -

Outputs: obj: the newly created object

PreCond: -

PostCond: - the directory is opened.

- ’Owner’ of directory is the id of the context

used to perform the operation, if the

saga-wg@ogf.org 13

GFD-R-P.XX SAGA Advert API November 19, 2010

directory gets created.

- the ttl timer of the object is started on

Creation, and if the Truncate flag is

specified.

Perms: Exec for parent directory.

Write for parent directory if Create is set.

Write for name if Write is set.

Read for name if Read is set.

Throws: NotImplemented

IncorrectURL

BadParameter

DoesNotExist

AlreadyExists

PermissionDenied

AuthorizationFailed

AuthenticationFailed

Timeout

NoSuccess

Notes: - if the ’Truncate’ flag is given, the returned

object MUST NOT have an associated object, and

MUST have an empty attribute set.

- the ’Truncate’ flag requires that the entry

exists, or that the ’Create’ flag is given,

too. Otherwise, a DoesNotExist exception is

thrown.

- the ’Create’ flag implies ’Write’.

- DESTRUCTOR

Purpose: destroy the object

Format: DESTRUCTOR (in entry obj)

Inputs: obj: the object to destroy

InOuts: -

Outputs: -

PreCond: -

PostCond: - the directory is closed.

Perms: -

Throws: -

Notes: -

- set_ttl

Purpose: set a time to life, and restart the ttl timer.

Format: set_ttl (in int ttl);

Inputs: ttl: time to live in seconds

InOuts: -

saga-wg@ogf.org 14

GFD-R-P.XX SAGA Advert API November 19, 2010

Outputs: -

PreCond: -

PostCond: - the instance’s ttl timer is restarted.

- the instance’s ttl is set to ttl.

Perms: - Write

Throws: NotImplemented

IncorrectState

BadParameter

Timeout

NoSuccess

Notes: - A ttl value ’0’ declares the instance as

garbage immediately.

- backends MAY decline specific TTL parameter,

if they are not willing to guarantee that

lifetime. In those cases, the implementation

MUST throw a ’BadParameter’ exception.

- get_ttl

Purpose: get the time to life

Format: get_ttl (out int ttl);

Inputs: -

InOuts: -

Outputs: ttl: time to live in seconds

PreCond: -

PostCond: - the instance’s ttl timer not restarted.

Perms: - Read

Throws: NotImplemented

IncorrectState

Timeout

NoSuccess

Notes: -

+

+ - set_ttl

+ Purpose: set a time to life, and restart the ttl timer.

+ Format: set_ttl (in url name,

+ in int ttl);

+ Inputs: ttl: time to live in seconds

+ name: entry to set ttl for

+ InOuts: -

+ Outputs: -

+ PreCond: -

+ PostCond: - the instance’s ttl timer is restarted.

+ - the instance’s ttl is set to ttl.

+ Perms: - Write

saga-wg@ogf.org 15

GFD-R-P.XX SAGA Advert API November 19, 2010

+ Throws: NotImplemented

+ IncorrectState

+ BadParameter

+ Timeout

+ NoSuccess

+ Notes: - A ttl value ’0’ declares the instance as

+ garbage immediately.

+ - backends MAY decline specific TTL parameter,

+ if they are not willing to guarantee that

+ lifetime. In those cases, the implementation

+ MUST throw a ’BadParameter’ exception.

+

+

+ - get_ttl

+ Purpose: get the time to life

+ Format: get_ttl (in url name,

+ out int ttl);

+ Inputs: name: entry to get ttl for

+ InOuts: -

+ Outputs: ttl: time to live in seconds

+ PreCond: -

+ PostCond: - the instance’s ttl timer not restarted.

+ Perms: - Read

+ Throws: NotImplemented

+ IncorrectState

+ Timeout

+ NoSuccess

+ Notes: -

+

- find

Purpose: find adverts in the current directory and below,

with matching names and matching meta data

Format: find (in string name_pattern,

in array<string> attr_pattern,

in saga::object::type type = 0,

in int flags = Recursive,

out array <saga::url> names);

Inputs: name_pattern: pattern for names of

entries to be found

attr_pattern: pattern for meta data

key/values of entries to be

found

type: filter for adverts with

attached saga objects of that

type

saga-wg@ogf.org 16

GFD-R-P.XX SAGA Advert API November 19, 2010

flags: flags defining the operation

modus

InOuts: -

Outputs: names: array of names matching all

criteria

PreCond: -

PostCond: -

Perms: Read for cwd.

Query for entries specified by name_pattern.

Exec for parent directories of these entries.

Query for parent directories of these entries.

Read for directories specified by name_pattern.

Exec for directories specified by name_pattern.

Exec for parent directories of these directories.

Query for parent directories of these directories.

Throws: NotImplemented

BadParameter

IncorrectState

PermissionDenied

AuthorizationFailed

AuthenticationFailed

Timeout

NoSuccess

Notes: - the semantics for both the find_attributes()

method in the saga::attributes interface and

for the find() method in the

saga::ns_directory class apply. On

conflicts, the find() semantic supersedes

the find_attributes() semantic. Only entries

matching all attribute patterns, the name

space pattern and the object type are returned.

- the default flags are ’Recursive’ (2).

- expired entries (see ttl) MUST NOT be returned.

2.3.3 Class advert::advert

The advert::advert class follows the purpose and semantics of the inherited
saga::namespace::entry class. Two methods allow to manage the saga::object
instance associated with that advert entry.

Advert entry instances also have a ttl, which follows the same semantics as
defined above for the advert directory. Further, the advert entry implements
the saga::attributes interface, and can thus hold an arbitrary set of user

saga-wg@ogf.org 17

GFD-R-P.XX SAGA Advert API November 19, 2010

defined attributes.

- CONSTRUCTOR

Purpose: create the object

Format: CONSTRUCTOR (in session s,

in saga::url name,

in int flags = Read,

out entry obj)

Inputs: s: session handle

name: initial working dir

flags: open mode

InOuts: -

Outputs: obj: the newly created object

PreCond: -

PostCond: - the entry is opened.

- ’Owner’ of target is the id of the context

use to perform the operation, if the

entry gets created.

Perms: Exec for parent directory.

Write for parent directory if Create is set.

Write for name if Write is set.

Read for name if Read is set.

Throws: NotImplemented

IncorrectURL

BadParameter

DoesNotExist

AlreadyExists

PermissionDenied

AuthorizationFailed

AuthenticationFailed

Timeout

NoSuccess

Notes: - semantic as in saga::namespace::entry

- if the ’Truncate’ flag is given, the returned

object MUST NOT have an associated object, and

MUST have an empty attribute set.

- the ’Truncate’ flag requires that the entry

exists, or that the ’Create’ flag is given,

too. Otherwise, a DoesNotExist exception is

thrown.

- the ’Create’ flag implies ’Write’.

- DESTRUCTOR

saga-wg@ogf.org 18

GFD-R-P.XX SAGA Advert API November 19, 2010

Purpose: destroy the object

Format: DESTRUCTOR (in entry obj)

Inputs: obj: the object to destroy

InOuts: -

Outputs: -

PreCond: -

PostCond: - the entry is closed.

- the instance’s ttl timer is not restarted.

Perms: -

Throws: -

Notes: - semantic as in saga::namespace::entry

- set_ttl

Purpose: set a time to life, and restart the ttl timer.

Format: set_ttl (in int ttl);

Inputs: ttl: time to live in seconds

InOuts: -

Outputs: -

PreCond: -

PostCond: - the instance’s ttl timer is restarted.

- the instance’s ttl is set to ttl.

Perms: - Write

Throws: NotImplemented

IncorrectState

Timeout

NoSuccess

Notes: - all notes to advert::directory::set_ttl()

method apply

- get_ttl

Purpose: get the time to life

Format: get_ttl (out int ttl);

Inputs: ttl: time to live in seconds

InOuts: -

Outputs: -

PreCond: -

PostCond: - the instance’s ttl timer is not restarted.

Perms: - Read

Throws: NotImplemented

IncorrectState

Timeout

NoSuccess

Notes: - all notes to advert::directory::get_ttl()

method apply

saga-wg@ogf.org 19

GFD-R-P.XX SAGA Advert API November 19, 2010

- store_object

Purpose: associate a saga::object instance with the entry

Format: store_object (in saga::object content);

Inputs: content: saga::object to be

associated with the entry

InOuts: -

Outputs: -

PreCond: -

PostCond: - the given object instance can be retrieved

with retrieve_object().

- any reference to an previously associated

object is removed.

- the advert’s ttl is reset

Perms: -

Throws: NotImplemented

IncorrectState

Timeout

BadParameter

NoSuccess

Notes: - if the implementation does not support the

association of that object type, a

’BadParameter’ exception is thrown.

- if no object is associated with this advert,

an ’IncorrectState’ exception is thrown.

- retrieve_object

Purpose: retrieve the associated saga::object instance

Format: retrieve_object (out saga::object content);

Inputs: -

InOuts: -

Outputs: content: saga::object associated

with the entry

PreCond: -

PostCond: -

Perms: -

Throws: NotImplemented

IncorrectState

Timeout

BadParameter

NoSuccess

Notes: - if the implementation cannot de-serialize the

stored object type, a ’NoSuccess’ exception is

thrown. Language bindings MAY throw a native

saga-wg@ogf.org 20

GFD-R-P.XX SAGA Advert API November 19, 2010

type mismatch exception.

- if no object is associated with this advert,

an ’IncorrectState’ exception is thrown.

- if the implementation can deserialize the

stored object type, but cannot deserialize

that specific instance, an ’IncorrectState’

exception is thrown.

- the object stays associated with the entry.

- each call to this method retrieves a new copy

of the original object.

- for all practical purposes, retrieve_object

behaves exactly like object.clone().

- delete_object

Purpose: de-associate a saga::object instance from the entry

Format: delete_object (void);

Inputs: -

InOuts: -

Outputs: -

PreCond: -

PostCond: - the given object instance cannot be retrieved

with retrieve_object() anymore.

- the advert’s ttl is reset

Perms: -

Throws: NotImplemented

IncorrectState

Timeout

NoSuccess

Notes: - if no object is associated with this advert,

an ’IncorrectState’ exception is thrown.

saga-wg@ogf.org 21

GFD-R-P.XX Example Code November 19, 2010

3 Example Code

This section lists a number of C++ code examples, to illustrate the use of the
Advert API package. These examples are not normative.

3.1 Advertising Jobs

This first example code runs a simple job, and creates an advert entry to publish
the created job instance. The second code snippet, representing a different
SAGA application, scans the used advert directory for all entries, and prints
some details for all jobs found there. A real world application would need to
ensure that the used advert entry names are unique, for example basing them
on the job id.

Advertising Jobs

1 // run a simple job

2 saga::job::service js;

3 saga::job::job j = js.run_job ("sleep 1000");

4

5 // create an advert for that job, and publish the job instance

6 saga::advert::entry advert ("any:///users/merzky/jobs/test.adv",

7 saga::advert::Create);

8 advert.store_object (j);

Scanning Published Jobs

1 // open the resource job directory

2 saga::advert::directory adir ("any:///users/merzky/jobs/");

3

4 // list all registered (i.e. advertised) jobs

5 std::vector <saga::url> ads = adir.list ();

6

7 // for each found job, show some basic info

8 for (unsigned int i = 0; i < ads.size (); i++)

9 {

10 saga::advert::entry ad = adir.open (ads[i], saga::advert::Read);

11 saga::job::job j = ad.retrieve_object <saga::job::job> ();

12

13 std::cout << "id : " << j.get_job_id () << std::endl

14 << "state : " << j.get_state () << std::endl

15 << "exe : " << j.get_description ()

16 .get_attribute ("Executable")

17 << std::endl << std::endl;

18 }

saga-wg@ogf.org 22

GFD-R-P.XX Example Code November 19, 2010

3.2 Advertising Resources

The first code snippet advertises information about the compute resource it is
running on. Those information could, for example, be used for application level
scheduling decisions. Pseudo functions are used to obtain and parse the output
of Unix command line commands. Also, we use pseudo string concatenation
("abc" + "def") to further simplify the example.

Advertising Resources

1 // get the name of the host we run on

2 std::string hostname = run ("hostname");

3

4 // create an advert for this resource, if it doesn’t yet exist

5 saga::advert::entry ad (any:///users/merzky/resources/" + hostname,

6 saga::advert::Create);

7

8 // publish some resource attributes

9 ad.add_attribute ("hostname" , cut (-1, // last field

10 grep ("^" + hostname,

11 run ("dig " + hostname))));

12 ad.add_attribute ("ostype" , run ("uname -s"));

13 ad.add_attribute ("architecture" , run ("uname -m"));

14 ad.add_attribute ("n_cpus" , wc ("-l",

15 grep ("^processor,

16 run ("cat /proc/cpuinfo"))));

17 ad.add_attribute ("size_home" , cut (2,

18 run ("df -h ~")));

19 ad.add_attribute ("size_tmp" , cut (2,

20 run ("df -h /tmp/")));

21 ad.add_attribute ("size_data" , cut (2,

22 grep ("^Mem:",

23 run ("free -g"))));

24 ad.add_attribute ("load" , grep ("^Cpu",

25 run ("top -b -n1")));

The resource adverts published by the example above can be used to run an
application on a specific CPU architecture, for example.

saga-wg@ogf.org 23

GFD-R-P.XX Example Code November 19, 2010

Using Resource Adverts

1 // open the resource advert directory

2 saga::advert::directory adir ("any:///users/merzky/resources/");

3

4 // find resources adverts with matching attributes

5 std::vector <saga::url> candidates =

6 adir.find ("*", // all resources

7 "architecture=x68*" // with an x86 arch

8 // (x86, x86_32, x86_64, ...)

9);

10

11 // ensure we found a matching resource

12 assert (candidates.size () > 0);

13

14 // run the job on the first matching resource

15 saga::job::service js;

16 js.run_job ("/path/to/application", candidates[0]);

saga-wg@ogf.org 24

GFD-R-P.XX Example Code November 19, 2010

3.3 Master-Worker Example

For a high level description of this example application, see section 2.1.

Master Code - Startup

1

2 #define BASE_URL std::string ("any://advert.db.net/my_app")

3 #define JOBNUM 100 // size of worker pool

4 #define WORKNUM 1000 // number of work items

5

6 // the master spawns jobs, and assigns them work items. These info

7 // are stored in the advert service, waiting for the jobs to pick

8 // them up, and report back.

9 int main ()

10 {

11 // a job description - details are left to the reader

12 saga::job::description jd;

13

14 // create the job service used to spawn the slaves

15 saga::job::service js ("any://job.service.net");

16

17 // create the job registry in the advert data base

18 saga::advert::directory jobs (BASE_URL + "jobs/",

19 saga::advert::Create);

20

21 // keep track of jobs and job_ids

22 saga::task_container tc;

23 std::vector <std::string> job_ids;

24

25 // spawn the slaves

26 for (int i = 0; i < JOBNUM; i++)

27 {

28 saga::job::job j = js.create_job (jd);

29

30 // register the slaves in the registry

31 saga::entry a = jobs.open (j.get_jobid (),

32 saga::advert::Create);

33 a.store_object (j);

34

35 // keep job and jobid

36 tc.add_task (j);

37 job_ids.push_back (j.get_jobid ());

38 }

39

40 // create the work item registry in the advert data base

41 saga::advert::directory works ("BASE_URL + "works/",

42 saga::advert::Create);

43

44 // publish work items, and assign them to the slaves

saga-wg@ogf.org 25

GFD-R-P.XX Example Code November 19, 2010

45 for (int i = 0; i < WORKNUM; i++)

46 {

47 // open file representing the work item (pseudo code)

48 saga::filesystem::file f ("any://data.src.net/data/set_[i].dat");

49

50 // publish it in the work item queue

51 saga::entry a = works.open (f.get_name (),

52 saga::advert::Create);

53 a.store_object (f);

54

55 // assign it to a job (pseudo code)

56 a.set_attribute ("worker_id", job_ids[j % JOBNUM]);

57 a.set_attribute ("worker_state", "assigned");

58 }

59

60 // work items are created and assigned, now we can start the jobs,

61 // so that they can begin to pick up work

62 tc.run ();

63

64 // the master can safely exit here, as all job and work item info

65 // are persistently stored in the advert service

66 return 0;

67 }

saga-wg@ogf.org 26

GFD-R-P.XX Example Code November 19, 2010

Client Code Code - Work

1 #define BASE_URL std::string ("any://advert.db.net/my_app")

2

3 // the client gets its own job_id, and retrieves all work items

4 // assigned to it. After completing them, it ticks them off in the

5 // registry, and finishes if no further work is pending.

6 int main ()

7 {

8 // get own job id

9 saga::job::service js;

10 saga::job::job me = js.get_self ();

11 std::string id = me.get_jobid ();

12

13 // retrieve a data items from the work item queue

14 saga::advert::directory works (BASE_URL + "works/");

15

16 std::vector <std::string> pat; // meta data to match this

17 pat.push_back ("worker_id=" + id); // pseudo code string ops

18 pat.push_back ("worker_state=assigned"); // only pick new items

19

20 // this worker type can only work on files

21 std::vector <saga::url> items = works.find ("*", pat,

22 saga::object::File);

23 while (! items.empty ())

24 {

25 // work on the items

26 for (int i = 0; i < items.size (); i++)

27 {

28 // open the work item

29 saga::advert::entry a = works.open (items[i]);

30

31 // signal that we work on that item

32 a.set_attribute ("worker_state", "accepted");

33

34 // do work, on the file which is ’contained’ in the advert

35 do_work (a.get_object <saga::filesystem::file> ());

36

37 // signal that item is completed

38 a.set_attribute ("worker_state", "completed");

39 }

40

41 // refresh work item list

42 items = works.find ("*", pat, saga::object::File);

43 }

44

45 // done - just finish

46 return 0;

47 }

saga-wg@ogf.org 27

GFD-R-P.XX Example Code November 19, 2010

Master Code - Check and Finish

1 #define BASE_URL std::string ("any://advert.db.net/my_app")

2

3 // another master (yes, we have two) checks the status of jobs and

4 // workers, and cleans up if everything is done.

5 int main ()

6 {

7 bool completed = true;

8

9 // open the work item registry in the advert data base, and get

10 // all work items

11 saga::advert::directory works (BASE_URL + "works/");

12 std::vector <saga::url> items = works.list ();

13

14 // check item state

15 for (int i = 0; i < items.size (); i++)

16 {

17 saga::advert::entry a = works.open (items[i]);

18 std::cout << " item " << i

19 << " handled by " << a.get_attribute ("worker_id")

20 << " has state " << a.get_attribute ("work_state")

21 << std::endl;

22

23 // check global state

24 if (a.get_attribute ("work_state") != "completed")

25 {

26 completed = false;

27 }

28 }

29

30

31 // open the job registry in the advert data base, and get all jobs

32 saga::advert::directory jobs (BASE_URL + "jobs/");

33 std::vector <saga::url> ids = jobs.list ();

34

35 // check item state

36 for (int i = 0; i < ids.size (); i++)

37 {

38 saga::advert::entry a = jobs.open (ids[i]);

39 saga::job::job j = a.get_object <saga::job::job> ();

40

41 std::cout << " job " << i

42 << " has id " << ids[i]

43 << " and state " << j.get_attribute ("State")

44 << std::endl;

45

46 // check global state

47 if (j.get_state != saga::job::Done ||

48 j.get_state != saga::job::Failed)

saga-wg@ogf.org 28

GFD-R-P.XX Example Code November 19, 2010

49 {

50 completed = false;

51 }

52 }

53

54

55 // if everything is done, we can clean up the advert service dirs.

56 // Otherwise, we just wait for the next run to do so, eventually.

57 if (completed)

58 {

59 works.remove (saga::advert::Recursive);

60 jobs.remove (saga::advert::Recursive);

61 }

62

63 return (completed ? 0 : 1);

64 }

saga-wg@ogf.org 29

GFD-R-P.XX Intellectual Property Issues November 19, 2010

4 Intellectual Property Issues

4.1 Contributors

This document is the result of the joint efforts of many contributors. The author
listed here and on the title page is the one taking responsibility for the content
of the document, and all errors. The editor (underlined) is committed to taking
permanent stewardship for this document and can be contacted in the future
for inquiries.

Andre Merzky
andre@merzky.net

Center for Computation and Technology
Louisiana State University
216 Johnston Hall
70803 Baton Rouge
Louisiana, USA

The initial version of the presented SAGA API was drafted by members of the
SAGA Research Group. Members of this group did not necessarily contribute
text to the document, but did contribute to its current state. Additional to the
authors listed above, we acknowledge the contribution of the following people,
in alphabetical order:

Andrei Hutanu (LSU), Hartmut Kaiser (LSU), Pascal Kleijer (NEC), Thilo
Kielmann (VU), Gregor von Laszewski (ANL), Shantenu Jha (LSU), John Shalf
(LBNL), and Ole Weidner (LSU).

4.2 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which
any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover tech-
nology that may be required to practice this recommendation. Please address
the information to the OGF Executive Director.

saga-wg@ogf.org 30

GFD-R-P.XX Intellectual Property Issues November 19, 2010

4.3 Disclaimer

This document and the information contained herein is provided on an ”As
Is” basis and the OGF disclaims all warranties, express or implied, including
but not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

4.4 Full Copyright Notice

Copyright (C) Open Grid Forum (2007). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the OGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the OGF Document process must
be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

saga-wg@ogf.org 31

GFD-R-P.XX Intellectual Property Issues November 19, 2010

References

[1] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann,
A. Merzky, R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schütt,
E. Seidel, and B. Ullmer. The Grid Application Toolkit: Towards
Generic and Easy Application Programming Interfaces for the Grid.
Proceedings of the IEEE, 2004.

[2] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, A. Merzky, J. Shalf,
and C. Smith. GFD.90 – SAGA Core API Specification. OGF Proposed
Recommendation, Open Grid Forum, 2007.

[3] S. Jha, D. S. Katz, M. Parashar, O. Rana, and M. Cole. Abstractions for
distributed systems (dpa 2008). In Euro-Par Workshops, page 401, 2008.

[4] A. Merzky and S. Jha. A Collection of Use Cases for a Simple API for Grid
Applications. Grid Forum Document GFD.70, 2006. Global Grid Forum.

[5] A. Merzky and S. Jha. A Requirements Analysis for a Simple API for Grid
Applications. Grid Forum Document GFD.71, 2006. Global Grid Forum.

saga-wg@ogf.org 32

	Introduction
	Notational Conventions
	Security Considerations

	SAGA Advert API
	Introduction
	Specification
	Specification Details

	Example Code
	Advertising Jobs
	Advertising Resources
	Master-Worker Example

	Intellectual Property Issues
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice

	References

