GFD-1.162 Thijs Metsch, Sun Microsystems
Open Cloud Computing Interface Jan. 14, 2010

Open Cloud Computing Interface - Use cases and requirements for a Cloud API

I [1 (o 13 ot 1 o] o IR PO PP PP PUPPPTR PPN 1
2. OCCI USE CASES ..ovuuiiiriieiiiieei ettt ettt et e e et et e e et e e ra e en 2
2.1. SLA-aware cloud infrastructure using SLA@SOIcooeviiiiiiiiiiiiiiiieeeeeeen, 2
2.2. Service Manager to control the Life cycle of Servicesc.ocviiiiiiiiiinennnnn, 2
2.3. Interoperability across Cloud Infrastructures using OpenNebula 4
2.4. AJAX web front-end directly calling APlccoiiiiiiiiiii e, 5
2.5. Single technical integration to support multiple service providers 5
2.6. Wrapping EC2 in OCCI ...ttt 6
2.7. Automated Business Continuity and Disaster RECOVErYc.oceevviieieininnennns 6
2.8. Simple scripting of cloud from Unix shell ..., 6
2.9. Typical web hoStiNg CIUSTETcouuiiiiiiii e 6
2.10. Manage cloud resources from a centralized dashboardccccooeeenennee. 7
2.11. COMPUEE ClOUA ..ottt 7
2.12. MUltiple ANIOCALION ...c.vuuiiiiii e et e et e eees 8
2.13. Cloud Consumer Discovery of Cloud Provider's VM Input and Output
FOrMat SUPPOIT ...t 8
2.14. Cloud Consumer Discovery of Cloud Provider's Dataset Input and Output
FOrMat SUPPOIT ...ttt e 9
3. OCCI REQUITEIMENTESeiiitie ettt ettt ettt et e e et e e et e e e e 9
3.1. Functional REQUIFEMENTSuiiiiiiiieieii et 9
3.2. Non-functional REQUIFEMENESuiiiiiiiieiiiii e 12
4. Cloud AP fEALUIE MALIIX ...e.vuuieiiiieee ettt e e e e e e e eees 12
5. CONCIUSIONS ...ttt et e e ettt e e ettt e e et e et e et e e e enaa e eeens 14
6. CONMIDULOIS ...ttt et e e e e et et e e e e et e e e ent e eeens 14
7. Intellectual Property StateMENToouuiiiiiiiiie e 14
8. DISCIAIMET ..ttt 15
9. FUll Copyright NOLICEcciiiiiiiiiiii e e e e eens 15
10, REEIENCES ...ttt ettt e et e e e eees 15

Status of This Document

This document provides information to the Cloud and Grid community. Distribution is
unlimited.

Copyright Notice

Copyright (¢) Open Grid Forum (2009,2010). All Rights Reserved.
Abstract

This document is an informal description of Use Cases and requirements for the OOCI Cloud
API. Created by the Open Cloud Computing Interface working group. This document records
the needs of laaS Cloud computing managers and administrators in the form of Use Cases.
The Use Cases serve as the primary guide for the development of API requirements. The
document is the first deliverable to demonstrate and validate the features of the Open Cloud
Computing Interface.

1. Introduction

This document includes all the Use Cases and requirements which were gathered in the
working group.

This document is organized in to three sections: Use Cases, Requirements and a comparison
matrix of current Cloud APIs. In this document, Use Cases are defined by name and a set of
functional and non-functional requirements. All requirements are catagorized and formatted
in tables. Each requirement is (whenever possible) mapped to a Use Case. Priorities have

occi-wg@ogf.org 1

GFD-1.162 Thijs Metsch, Sun Microsystems
Open Cloud Computing Interface Jan. 14, 2010

been assigned to all requirements. The Cloud API comparison matrix itemizes generalized
and detail features of each API and indicates which API supports each feature.

2. OCCl Use Cases

The following section describes the Use Cases which were gathered during the requirements
analyses for the OCCI working group. They are used to set up the requirements and later
on to verify the OCCI specification.

2.1. SLA-aware cloud infrastructure using SLA@SOI

There is a need for a standard interface for dynamic infrastructure provisioning. While doing
so it must be guaranteed and verified that the infrastructure provisioning uses 'machine-
readable' SLAs. *

Functional Requirements

* VM Description: request format important - In this area is where there is least coherency
amongst providers.

« VM Description: a means to add non-functional constraints on functional attributes.

* VM Management: all parameters in the request should be "monitor-able" and verifiable. Full
control of resources (VMs) allocated required; at a minimum: start, stop, suspend, resume.

* VM Monitoring: Monitoring non-functional constraints declared in provisioning request

» Network Management: resources assignable by network tag - defaults of public and private
further sub-categorisation could be allowed e.g. tag of web could be assigned to the public
network group.

» Storage Management: simple mount points, reuse storage SaasS offerings
Non-functional Requirements
» Security: Transport and user level (ACLs? o0Auth?) security

* Quality of Service: Can be many - Part of service offering from the infrastructure provider
e.g. Security, QoS, geo-location, isolation levels - NFPs are the basic building blocks of
differentiating laaS providers.

» Scheduling Information: When a particular resource is to be run. Also in which order should
a collection of resources be ran in the case that one resource is dependent on another.

2.2. Service Manager to control the Life cycle of Services

This Use Case is based in the 'Service Manager' (SM) layer of the RESERVOIR project
architecture. 'Service Providers' (SP) willing to deploy their service on the Cloud use this layer
to control the service life cycle. The SM operates over the Cloud infrastructure automatically
as the service demands. In a way, the SM maps the service configuration and needs to calls
to the Cloud infrastructure, so many of the requirements imposed by the SM are due to the
flexibility that the SM aims to provide to SPs.?

Functional Requirements

* Network Management: There should be methods for the Allocation of private networks,
where VMs can be attached to. A special network (e.g. 'Public Network’) should be
available. When some network interface is attached to it, the infrastructure must assign
a public IP address.

1S A@SO0I project website - http://sla-at-soi.eu
°RESERVOIR project website - http://www.reservoir-fp7.eu

occi-wg@ogf.org 2

GFD-l.162

Thijs Metsch, Sun Microsystems

Open Cloud Computing Interface Jan. 14, 2010

» Image Management: There should be methods to register, upload, update and download

disk images.

VM Description: It should be possible to describe all the VM hardware components and
their attributes, along with any restriction regarding the VM location:

* Memory: Size
¢ CPU: Architecture, amount of CPU's and speed.

» Disk: Size, Interface (SCSI, IDE, SATA...), RAID (yes/no, and RAID level), Disk image
to mount, Automatic backup (yes/no, backups frequency...).

« Network: Interfaces, for each interface its bandwidth, and Network they are attached to.

< Geographical restrictions: Location(s) where the VM can/cannot be deployed (for
example for legal purposes).

< Migration allowed (yes/no): If migration is supported by the infrastructure, this flag sets
if it is allowed for the VM.

VM Management: There should be methods to allow the SM to change the VM state (for
example, from ACTIVE to SUSPENDED), if such transition is allowed by the infrastructure
(i.e. is defined in the OCCI's State Machine). The description of a VM can be changed when
the machine is running (ACTIVE, SUSPENDED...). But it will not be taken into account until
the machine is stopped and started again, unless it is a change regarding geographical or
migration restrictions. Each disk backup will have an id, as the images defined by the SM.
Methods to download any backup should be provided. As each backup is, after all, a disk
image, it should be possible to mount it on any VM. For example, it should be possible
to stop a VM, change its configuration so its disk mounts this backup image, and restart
the VM.

Monitoring: The status (We use the term 'status' when talking about monitoring, and try
not to use the term 'state’' to avoid confusion with the states of the OCCI State Machine.)
representation of any element is given as a list of keys and their values. For example,
the status of a memory component could be given by the amount of memory used and
the cache memory. Then, the keys could be: 'used' and 'cache' with the values '142MB'
and '430MB'. Both the request and the reply use the corresponding element identifier. Two
types of monitoring should be supported:

e Pull based: The SM can request the status of any element it has registered: VMs,
networks... Also, the SM can request the status of components, for example, the status
of certain disk of a certain VM.

* Publish/subscribe based: The SM can subscribe to be notified about events on the VMs
and/or Networks. Some of the events to be notified are:

» Errors on some component of a VM.
» Changes on the state of a VM (e.g. from ACTIVE to SUSPENDED).

» Periodic notifications about some element state. The frequency of this notifications
can be configured in the subscription message.

Error messages: If a VM could not be created, or a image could not be uploaded, etc... the
platform should return an error message carrying a detailed description of the reason.

Identifications: Networks, VMs and images should have unique IDs, (UUIDs, URIs, or the
like). It is to be determined whether components of VMs (disks, memory...) should have
an unique ID too. IDs are assigned by the Cloud infrastructure when the corresponding
element is created.

occi-wg@ogf.org 3

GFD-1.162 Thijs Metsch, Sun Microsystems
Open Cloud Computing Interface Jan. 14, 2010

Non-functional Requirements

» Both for hardware configuration and monitoring values there should be a clear, standard
way to set which magnitude the value represents. For example, when setting the memory
size to '2', it must be clear that we refer to GBs and not to MBs. An option would be setting
the value to '2GB’, another would be allowing to set both the value and the magnitude:
value '2' and magnitude 'GB'.

» Protocols: The transport, message format, and state representation should use open and
standard protocols, each one which strong software support (i.e. libraries and frameworks
available for several programming languages).

2.3. Interoperability across Cloud Infrastructures using OpenNebula

OpenNebula is a Virtual Infrastructure Engine, being enhanced in the RESERVOIR project,
which allows the management of Virtual Machines on a pool of physical resources It offers
three main functionalities: backend of a public cloud, manage a virtual infrastructure in the
data-center or cluster (private cloud), achieve cloud interoperation (hybrid cloud), the latter
being relevant in this Use Case.

The aim of this Use Case is to state the requirements that an API for cloud providers should
take into account in order to expose an interface that will enable the management of groups of
Virtual Machines across them. These requirements are gathered from the experience using
OpenNebula to manage Virtual Machines from different cloud providers. Currently, there are
two set of plugins for OpenNebula to access Amazon EC2 and ElasticHosts cloud providers
that leverage the use of both cloud providers in a transparent fashion for the end user.’

Functional Requirements

* VM Description: Virtual Machines should be described consistently across cloud providers
using a slim set of indispensable attributes, such as:

* Memory: Amount of RAM needed by the Virtual Machine
e CPU: Number of CPUs needed by the Virtual Machine (this needs to be normalized)

» Disk: Disks that will conform the basic filesystem and possibly others for the Virtual
Machine

« Network: How many network interface this Virtual Machine should have, and where
should be attached

« VM Management: API should offer functionality to enforce operations upon Virtual
Machines, such as:

DEPLOY: Launches the Virtual Machine

* SHUTDOWN: Shutdown the Virtual Machine

e CANCEL: Cancels the Virtual Machine in case of failure, or destroys it if it is running
¢« CHECKPOINT: Creates a snapshot of the Virtual Machine

¢ SAVE: Creates a snapshot of the Virtual Machine AND suspends it

« RESTORE: Resumes a Virtual Machine from a previous snapshot

¢ POLL: Retrieves information about Virtual Machine state and consumption attributes
(percentage of Memory, CPU used, bytes transferred, and so on)

BOpenNebuIawebsi te - http://www.opennebula.org

occi-wg@ogf.org 4

GFD-l.162

Thijs Metsch, Sun Microsystems

Open Cloud Computing Interface

» Additionally, Virtual Machines should be in one of the following states:

PENDING: VM is waiting for a physical resource slot.

BOOTING: VM is being booted

RUNNING: VM is active, it should be able to start offering a service
SUSPENDED: VM is suspended, waiting for a resume.
SHUTDOWN: VM is being shutdown.

CANCEL: VM has been canceled by the user or by a scheduler.

FAILED: VM crashed or hasn't started properly.

» Network Management: API should expose functionality to

L]

Create Private Virtual Networks

Attach Public IP to Virtual Machine

Jan. 14, 2010

* Image Management: The ability to upload disk images is fundamental to virtual machine
management to avoid the need to reinstall software for each cloud provider. The upload
process should return an identifier to be used in the Virtual Machine Description.

Non-functional Requirements

» Security: Security should be handled using X509 certificates for authentication. Also,
authorization can be based on said certificates and ACL lists.

* Quality of Service: When used in conjunction with Haizea, OpenNebula provides advanced
reservation functionality. Cloud providers API should provide similar capabilities to ensure
proper QoS.

2.4. AJAX web front-end directly calling API

This Use Case describes the ability to create web front-ends for Clouds. A cloud provider
implements their customer web front-end as an entirely client-side AJAX application calling
the OCCI API directly.

Functional Requirements

» Completeness: APl must be contain complete set of calls to completely specify and control
cloud (but this is likely only ~15-20 verbs on ~3-4 nouns!)

» Responsiveness: Calls must return swiftly. In particular, we should provide a simple and
quick call to poll the _list of servers, drives, etc. that exist without listing all of their
properties, since this is computationally much cheaper for the cloud to return, and will need
to be regularly polled to catch any servers, etc. that are created outside of the interface.

Non-functional Requirements

» Syntax: A simple JSON syntax for the API will make the AJAX interface much simpler to
implement

2.5. Single technical integration to support multiple service providers

Today, each cloud provider (ElasticHosts, GoGrid, Amazon, etc.) integrates independently
with every other player in the cloud ecosystem (CohesiveFT, RightScale, etc), producing
O(n"2) separate technical integrations. In the future, if all cloud providers and cloud
ecosystem partners use a single standard API, then we have O(n) technical integrations, and
all potential partnerships can immediately interoperate.

occi-wg@ogf.org

GFD-1.162 Thijs Metsch, Sun Microsystems
Open Cloud Computing Interface Jan. 14, 2010

Non-functional Requirements

» Uptake: Standardized laaS API needs strong uptake in by both cloud providers and cloud
ecosystem.

2.6. Wrapping EC2 in OCCI

At the time of this writing, Amazon EC2 is popular cloud API for laaS. Cloud providers
implementing EC2 as well as other proprietary and open cloud APIs may not implement
OCCI. To help ensure that the OCCI API would be capable of interfacing to EC2 though
gateways, minimizing the impact to provider operations.

Functional Requirements
» Semantics: Must include the ability to fully describe core EC2 objects and operations
Non-functional Requirements

» A gateway to support the integration of OCCI and EC2
2.7. Automated Business Continuity and Disaster Recovery

Maintain a up-to-date remote shadows of physical and/or virtual machines, such that in the
event of a disaster it is possible to start and switch to the remote machines.

Functional Requirements
* VM Description: Metadata mapping to legacy systems

* VM Management: Automated management in the event of a disaster (e.g. startup, IP
changes).

* Network Management: Runtime alteration of IPs

« Image Management: Advanced, rsync style updates to synchronise machines with physical
equivalents (e.g. rsync block devices to remote raw disk files).

Non-functional Requirements

* Quality of Service: Reservation of capacity sufficient for fail over
2.8. Simple scripting of cloud from Unix shell

An end user wishes to script a simple task (such as starting a server at midnight every night
and shutting it down an hour later, automating fail over, reporting, etc.). They are using a
typical Unix/Linux setup, so would like to write a simple cron job which carries this out.

Non-functional Requirements

» Syntax: This should be as simple as possible to place minimal barriers to entry on the user.
The user should not need any development tools or libraries. They should be able to write
1-2 lines of shell script, posting a simple <5 lines of command data using curl, wget, etc.

2.9. Typical web hosting cluster

An end-user runs a typical web hosting cluster on a cloud, with: n database servers, m front-
end web server (bursting to x under load) and a load balancer (either a specialized virtual
machine or provided by the cloud like GoGrid).

Functional Requirements

» Completeness: The API should be able to fully express this cluster, which will require at
least: (n+m+x) virtual machines, storage for each virtual machine, two networks (a private

occi-wg@ogf.org 6

GFD-1.162 Thijs Metsch, Sun Microsystems
Open Cloud Computing Interface Jan. 14, 2010

one connecting the machines, and the public Internet also connected to the load balancer),
a fixed static IP for the website on the public Internet, possible specification of the load
balancer itself.

2.10. Manage cloud resources from a centralized dashboard

An end user wishes to view and control all of his cloud-based resources in a lightweight
(perhaps AJAX-based) console, perhaps the same web front-end referred to in this Use Case:
AJAX web front-end directly calling API

Functional Requirements

» Completeness: Every resource provided by the cloud is discoverable by the API, and every
action that can be performed on all these resources is also available via the API, together
with actuators to actually perform those actions, and all the attributes of the resources are
available via the API.

» Responsiveness: Calls must return swiftly. In particular, we should provide a simple and
quick call to poll the _list of servers, drives, etc. that exist without listing all of their
properties, since this is computationally much cheaper for the cloud to return, and will need
to be regularly polled to catch any servers, etc. that are created outside of the interface.
(text copied from AJAX web front-end directly calling API)

» Categorizability: (there's gotta be a better word...) The client must be able to identify
what type each resource is in order to display like-typed resources together and in order
to provide separate Ul views that might be specialized for certain resource types. For
example, the client must be able to differentiate between a compute resource that does
not represent an actual CPU (perhaps this is a compute template) and between a compute
resource that actually represents a running CPU. The interface for actually-running CPUs
might display the current IP address of the instance and allow you to SSH into the instance,
while a different tab in the interface might display all the compute templates and allow you
to instantiate instances from them.

» Taggability: Every resource discoverable by the APl must be able to be tagged by
the user. This supports the oft-occurring situation where resources, though they are
identified by the implementation-specific identifier, are easily identified using terminology
defined by the user for his specific context. For example, one might tag resource "/
compute/instanceABCDEFG" with the label "database server”, and the resource "/storage/
disk12345678" with the label "superSecretCorporateData".

» Searchability: The ability to request lists of resources must allow an optional filter that can
specify a category or tag upon which to filter the results. This allows one to further limit
their view to, for example, resources tagged "productionEnvironment"”, or resources of the
category "storage".

Non-functional Requirements

 Usability: This should be a user interface with context-menus and context-aware links that
allow the user to easily see what actions can be performed for each resource.

2.11. Compute Cloud

A cloud provider implements a RESTful API for provisioning, executing, and monitoring of
tasks.

Functional Requirements

» Secure: APl must be secured to ensure that only authorized identities are permitted to use
the API.

occi-wg@ogf.org 7

GFD-l.162

Thijs Metsch, Sun Microsystems

Open Cloud Computing Interface Jan. 14, 2010

Resource: An endpoint must be created for external monitoring, status, and auditing of
the task. This endpoint would be responsive to RESTful calls supporting AJAX and other
clients.

Scripted: The target system needs to understand and process directives which would be
provided with the task. These directives would include the ability to pull binaries or data
onto the system, run executables, and status the system resources.

Non-functional Requirements

Single Compute Method: The resultant service should be the same service that can be
used for many other purposes. It could be used for monitoring of system health, system
life-cycle management, system patching, and configuration changes. If this was the only
service on the system initially, it could then be used to build up the other services in a
plug-in manner.

2.12. Multiple Allocation

Allocate a whole cluster with one call.

Functional Requirements

Definition of groups: There should be a way to define groups of computers. In the example
of a cluster, there would be two groups: The Headnode and a couple of Workernodes.

Information: For configuration of the members of the defined groups, there should be way
(maybe a URL) to find out about all groups and their basic configurations. In the example,
the Headnode would want to know IPs or Hostnames of all Workernodes. The workernodes
will need to know this, as well _and_ they need to know, that the headnode is in a different

group.

2.13. Cloud Consumer Discovery of Cloud Provider's VM Input and Output
Format Support

A cloud consumer would like to discover the VM input and output formats accepted and
delivered by the cloud provider.

Functional Requirements

The provider supplies an APl which is availed over unsecured network connections.
The provider supplies an API which is availed over secured network connections.

The provider supplied API is availed for all consumer authentication and authorization
levels.

The provider supplied API identifies the supported VM input formats API uniquely and
commonly across all providers.

The provider supplied API identifies the supported VM output formats API uniquely and
commonly across all providers.

The provider supplied API identifies the supported VM formats uniquely and commonly
across all providers.

The provider API identifies mutliple supported VM input formats as a list uniquely and
commonly across all providers

The provider API identifier is unique and and consistent across all API representations.

The provider APl VM input and output format identifiers are unique and and consistent
across all providers.

occi-wg@ogf.org 8

GFD-1.162 Thijs Metsch, Sun Microsystems
Open Cloud Computing Interface Jan. 14, 2010

* The reported VM input and output formats are not required to be symetrical and equal and
in consistent order.

2.14. Cloud Consumer Discovery of Cloud Provider's Dataset Input and Output
Format Support

A cloud consumer would like to discover the Dataset input and output formats accepted and
delivered by the cloud provider.

Functional Requirements
» The provider supplies an API which is availed over unsecured network connections.
e The provider supplies an API which is availed over secured network connections.

e The provider supplied API is availed for all consumer authentication and authorization
levels.

» The provider supplied APl identifies the supported Dataset input formats API uniquely and
commonly across all providers.

» The provider supplied API identifies the supported Dataset output formats API uniquely
and commonly across all providers.

» The provider supplied APl identifies the supported Dataset formats uniquely and commonly
across all providers.

» The provider API identifies multiple supported Dataset formats as a list uniquely and
commonly across all providers

» The provider API identifier is unigue and and consistent across all API representations.

» The provider API Dataset input and output format identifiers are unique and and consistent
across all providers.

» The reported Dataset input and output formats are not required to be symetrical and equal
and in consistent order.

3. OCCI Requirements
3.1. Functional Requirements

This section deals with the funtional requirements. The requirments have been split up in
tables and prioritized.

Table 1. Functional requirements on VM description

ID Description Usecases | Priority

Al1l Attributes to define memory, CPU, disk and network|2.2, 2.3, 2.6 |High
requirements should be available.

Al.2. Attributes to define placement constraints, such as|2.2 Medium
geographical location must be supported

A.1.3. A attributes should demonstrate if migration is|2.2 Medium
supported by the infrastructure

A.l.4. The API should be able to fully express a cluster|2.9 High
(e.g. 5 VMs, storage for each VM, two networks (a
private one connecting the machines, and the public
internet also connected to the load balancer), a fixed
static IP for the website on the public internet)

occi-wg@ogf.org 9

GFD-l.162

Thijs Metsch, Sun Microsystems
Open Cloud Computing Interface Jan. 14, 2010
ID Description Usecases | Priority
A.15. A means to add constraints (non-functional,|2.1 High
functional) on attributes which are declared in a
provisioning request
A.l1.6. Support the scheduling of resource execution. Allow|2.1 Medium
provisioned resources to be execute sometime in
the future from the original request
A.l.7. Common operating systems should be supported |- High
A.1.8. Resources should be grouped according to provider |- High
policies
A.1.9. Then requesting new resource(s) the request must|- High
be fully complete/describing
Table 2. Functional requirements on VM management
ID Description Usecases | Priority
A.2.1. Methods to start, stop, suspend and resume VMs|2.1, 2.2,|High
must be available 2.3, 2.5,
2.11,2.10
A.2.2. Automated management in the event of a disaster|2.1, 2.7 Low
should be supported
A.2.3. Provide IDs for each backup disk and images 2.2 High
A.2.4. Provide methods to donwload any backup 2.2 Medium
A.2.5. APl should offer functionality to enforce the|2.3 High
following operations: deploy, shutdown, cancel,
checkpoint, save, restore, poll (could be merged
with monitoring)
A.2.6. The state model should include: pending, booting,|2.3 Medium
running, suspended, shutdown, cancel, failed
A.2.7. Listing collections should be possible without listing|2.4 Medium
all properties for each entry
A.2.8. Allow resource representations to be updated and|- Low
have those changes trigger events/changes upon
VMs
A.2.9. Support the usage of terminal, web, desktop and|2.10 Low
automated management interfaces
A.2.10. Support the migration of resources from a physical |- Medium
resource to the cloud, from a cloud to another cloud
and from a virtual resource to the cloud (This is a
topic regarding Interoperability)
A.2.11. Support a subset of all functions of today laaS based |2.6 Medium
Clouds (e.g. Amaton EC2)
A.2.12. A common interface should be used which can|2.13,2.14 |Medium
be supported by many Cloud service providers
(regarding Infrastructure and Data interfaces).
Table 3. Functional requirements on Network management
ID Description Usecases | Priority
A.3.1. Support the creation of VPNs 2.3 Low
A.3.2. Support multiple network connection (Public and|2.1, 2.2, 2.3|High
Private)
10

occi-wg@ogf.org

Open Cloud Computing

Thijs Metsch, Sun Microsystems

Interface Jan. 14, 2010
ID Description Usecases | Priority
A.3.3. It must be possible to attach and change IPs at|2.3, 2.7 Medium
runtime
A.3.4. Support a tagging mechanism for a group of network 2.1, 2.2, 2.3|Low
connections
A.3.5. Support network setups which allow an 'Intercloud' |- Medium
setup (This relates to Integration)
Table 4. Functional requirements on Storage management
ID Description Usecases | Priority
A.4.1. Allow the usage of URIs as mount points - allows|2.1 High
reuse of Storage service offerings
A.4.2. Allow the attachment of additional storage|- Medium
resources at runtime
Table 5. Functional requirements on Image management
ID Description Usecases Priority
A5.1. Methods which are capable to register, upload,|2.2 Medium
update and download disk images must be
available.
A.5.2. Updates based on rsync commands to synchronize|2.7 Medium
machines with physical equivalents should be
supported
A.5.3. When an upload completes successfully, an|2.2 Low
identifier should be returned
Table 6. Identifications/References
ID Description Usecases | Priority
A.6.1. Unique IDs for VM images and their components|2.2, 2.13,|High
must be available 2.14
A.6.2. It must be possbile to tag resources and their|2.10,2.12 |Medium
components
A.6.3. It must be possible to search for resources based|2.10, 2.12 |Medium
on e.g. tags.
Table 7. Monitoring
ID Description Usecases | Priority
A.7.1. Support pull-based monitoring that request the|2.1, 2.2, 2.3|Medium
status of the elements such as network , VM ...
A.7.2. Support for a publish/subscribe pattern that request|2.2 Medium
events which occur in the VM or networks (such
as Errors on some component, changes in the VM
state and other periodic notifications)
A.7.3. Attributes that define simple quick call to poll the list|2.4 Low
of servers, drives, etc should monitorable
A.7.4. Attributes about resource consumption of the VM |2.1, 2.2 Medium
from the hypervisor (CPU, memory...) should be
monitorable
A.7.5. Management reports should be generated from in|- Low
some of the following formats XML, PDF
11

occi-wg@ogf.org

GFD-1.162 Thijs Metsch, Sun Microsystems
Open Cloud Computing Interface Jan. 14, 2010
3.2. Non-functional Requirements
This section deals with all the non-funtional requirements.
Table 8. Security requirements
ID Description Usecases | Priority
B.1.1. Support the usage of X509 Certificates 2.3, 2.13,|High
2.14
B.1.2. Support the usage of ACLs B.1,21 High
B.1.3. Attributes to define Security levels should be|2.1 High
available in the descriptions
B.1.4. Transport and user level security should be given |2.1, 2.13,|High
2.14
B.1.5. Allow geographical region to be specified B.4 High
Table 9. Quality of Service
ID Description Usecases | Priority
B.2.1. Support capacities requirements for recovery /|2.7 Low
failover cases
B.2.2. Support of attributes in the VM description to define|2.1 High
QoS level (this also includes the reponse times)
B.2.3. Support of attributes in the VM describing the|2.1 Medium
Isolation level
B.2.4. Support of attributes for an advanced reservation|2.3 Low
functionality
B.2.5. Allow VM response times to be specified B.4 High
Table 10. Syntax
ID Description Usecases | Priority
B.3.1. No development tools or libraries should be needed|2.8 Medium
by the end-user
B.3.2. Support simple JSON syntax to suppot Ajax|2.4,2.10 Medium
interface
B.3.3. Clear definition of units (MB, GB etc) should be used |A.2, 2.4 Medium
in the requests (Like those defined by IEC 60027-2
A.2)
Table 11. Backup/Disaster recovery
ID Description Usecases Priority
B.4.1. Support a backup functionality of cloud resources |- Low
B.4.2. The interface should reconsider failover, disaster|- Medium
recovery and business continuity plans

4. Cloud API feature Matrix

Existing APIs for laaS based Clouds already fulfill some of the Use cases and also address
some requirements. The following list of APIs have been evaluated during the creation of the
OCCI working group process.

* OCCI - Open Cloud Computing Interface

» EC2 - Amazon Elastic Compute Cloud

occi-wg@ogf.org

12

GFD-l.162

Open Cloud Computing Interface

* EH - ElasticHosts

* FS - Flexiscale

* GG - GoGrid

e SC - Sun Cloud API

* CS - Rackspace Cloud Servers

* VM - WMware vSphere

Thijs Metsch, Sun Microsystems
Jan. 14, 2010

While this is not a complete or in depth evaultation of the APIs the following Matrix can used

as a basic reference point for APl comparism.

Table 12. Cloud API feature matrix

occi-wg@ogf.org

Feature |Requirement|occl|Ec2?| EH® | Fs® | cGY | sc® | cs' | vw?
Authentication|Client OK N/A |OK N/A [N/A |OK N/A |N/A
via HTTP compatibility
Authentication|Untrusted OK OK N/A [N/A |OK N/A |NA |?
via request|third-party
signing requests
Ephermal Lightweight |OK OK OK N/A [N/A [NJA [INJA |?
compute servers
resources
Persistent Stopped OK N/A |[NJA |OK OK OK OK OK
compute servers
resources
Ephermal Temporary OK OK N/A |N/A [N/A [N/A - IN/A - |N/A
storage Storage
resources
Persistent Permanent OK OK OK OK OK OK OK OK
storage Storage
resources
Multiple Complex OK OK OK N/A |[N/A [NJA |N/A |OK
storage architectures
resources
Multiple Complex OK N/A |OK N/A |[NJA |OK N/A |OK
network architectures
resources
Static IPs Internet- OK OK OK OK OK OK OK OK

facing

applications
Firewalling Basic network|? OK N/A |OK OK N/A |[NJA |OK

security
Load Horizontal ? N/A [N/A [NJA |OK N/A |OK N/A
Balancing scalability
Billing Business ? N/A |OK OK N/A - [N/A IN/A|?
Resource Organization |OK N/A - [NJA [NJA IN/A |N/A [NJA |?
categories of resources
Resource Finding OK N/A [N/A |[N/A [N/A |N/A [N/A |?
search Resources
Resource Organization |OK N/A |[N/A [NJA |N/A |OK N/A |?
tagging of resources

13

Thijs Metsch, Sun Microsystems

Open Cloud Computing Interface Jan. 14, 2010
Feature |Requirement|occl|Ec2?| EH? | Fs® | cGY | sc® | cs' | vwm?
Collections Enumeration |OK N/A |OK N/A [N/A [NJA INJA |?
(pass-by-
reference)
Collections Serialisation |OK OK OK OK OK OK OK ?
(pass-by-
value)

8Amazon Elastic Compute Cloud - http://aws.amazon.com/ec2

bE| asticHosts API - http:/Avww.elastichosts.com/products/api

“Flexiscale API - http://api.flexiscale.com/current/doc

4GoGrid API - http://wiki.gogrid.com/wiki/index.php/API

®The Sun Cloud API - http://www.kenai.com/projects/suncl oudapis/pages/Home

fCloud Server API - http://www.rackspacecloud.com/cloud_hosting_products/servers/api
9vMware vSphere - http://www.vmware.com/products/vsphere

5. Conclusions

The previous sections described to what extent Cloud requirements for an API exist. What's
missing up to now is a general solution that fits most of the needs, is simple to implement,
highly responsive (throughput), globally applicable (standard well known as well as dynamic
connections), secure, highly recognized (commonly known and implemented) and last but
not least standardized.

This working group plans to use these Use Cases and requirements for the creation of an
Cloud API.

Similar work has been done in the Cloud Computing Use Case group. This document is
published as the 'Cloud Computing Use Cases Whitepaper'. ccucw

6. Contributors

The following people have contributed to the requirements gathering and Use Case
documentation.

Table 13. List of contributors

Name Affiliation

Michael Behrens R2AD

Richard Davies ElasticHosts

Andy Edmonds Intel - SLA@SOI project

Sam Johnston Australian Online Solutions

Ignacio M. Llorente DSA-Research at UCM - RESERVOIR
project

Thijs Metsch (Editor) Sun Microsystems - RESERVOIR project

Gary Mazzaferro OCCI Counselour - Exxia, Inc.

George Reese O'Reilly

Luis Rodero-Merino Telefénica I+D

Shlomo Swidler MyDrifts

Tino Vazquez DSA-Research at UCM - RESERVOIR
project

7. Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the technology

occi-wg@ogf.org 14

GFD-1.162 Thijs Metsch, Sun Microsystems
Open Cloud Computing Interface Jan. 14, 2010

described in this document or the extent to which any license under such rights might or
might not be available; neither does it represent that it has made any effort to identify any
such rights. Copies of claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to obtain a general license or
permission for the use of such proprietary rights by implementers or users of this specification
can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

8. Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the
OGF disclaims all warranties, express or implied, including but not limited to any warranty
that the use of the information herein will not infringe any rights or any implied warranties of
merchantability or fitness for a particular purpose.

9. Full Copyright Notice
Copyright (C) Open Grid Forum (2009,2010). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are included on all such
copies and derivative works. However, this document itself may not be modified in any way,
such as by removing the copyright notice or references to the OGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which case the
procedures for copyrights defined in the OGF Document process must be followed, or as
required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF
or its successors or assignees.

10. References

[CCUCW] Cloud Computing Use Cases Whitepaper. http://ww. scri bd. com doc/ 17929394/
C oud- Comput i ng- Use- Cases- Wi t epaper. Cloud Computing Use Case Discussion
Group 2009-08.

occi-wg@ogf.org 15

http://www.scribd.com/doc/17929394/Cloud-Computing-Use-Cases-Whitepaper
http://www.scribd.com/doc/17929394/Cloud-Computing-Use-Cases-Whitepaper

