
GWD-Informational Karan Bhatia, Per Brand, Sergio Mendiola,
Category: Informational Alex Mallet, Karlo Berket
OGSAP2P Research Group 11/19/2004

 1

Peer-To-Peer Requirements On The Open Grid Services Architecture Framework

Status of This Memo

This memo provides information to the Grid community regarding the use of the OGSA
framework for peer-to-peer applications. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2002). All Rights Reserved.

Abstract

As the next generation of grid computing protocols centered around web services and OGSA are
developed, the peer-to-peer community must determine how these protocols can be used for
building peer-to-peer applications. Such applicability is not immediately obvious since peer-to-
peer systems have significantly different properties than traditional server-based grid systems.
For example, peer-to-peer systems exhibit different models of security and trust (machine user is
typically also the administrator), have different connectivity characteristics (machine IP addresses
may change due to mobility or firewalls/nats), and different usage models (instant messaging, file
sharing, and collaboration). Because of these differences, peer-to-peer applications are likely to
require different capabilities in the infrastructure than server-based grid applications. Yet despite
these differences, the shear numbers of desktop systems available today make the potential
advantages of interoperability between desktops and servers into a single grid system quite
compelling. Hence, the focus of this document is on developing a set of requirements for OGSA
to be used to build peer-to-peer applications.

Contents

Abstract ...1
1. Introduction: The need for a new global infrastructure...3

1.1 Prototypical Peer-to-Peer Applications..4
1.2 This document...4

2. Areas of work ..5
2.1 Scalability...5
2.2 Connectivity ...5
2.3 Dynamic and Distributed Discovery..5
2.4 Security ..5
2.5 Resource Availability and Failure Management ...5
2.6 Location Awareness..6
2.7 Group Support...6

3. Application Use Cases ...7
3.1 PC Grid Computing...7
3.2 File Sharing ...10
3.3 P2P Content Delivery ...12
3.4 Discovery ...14

4. Scale ..17
4.1 Number of Resources...17
4.2 Number of Users ...17
4.3 Number of Organizations..18

5. Connectivity ...19

GWD-Informational Karan Bhatia, Per Brand, Sergio Mendiola,
Category: Informational Alex Mallet, Karlo Berket
OGSAP2P Research Group 11/19/2004

 2

5.1 Network Address Translators (NATs)..19
5.2 Firewalls...22
5.3 DHCP...22
5.4 IP Address Mobility ...23
5.5 Network characteristics and peer profiles ...23

6. Dynamic distributed discovery. ..25
6.1 Connectivity ...25
6.2 Availability..25
6.3 Scalability...25
6.4 Initial peer discovery ...26
6.5 Discovering other resources ..26
6.6 Discovering Virtual Organizations..26
6.7 Discovering other peer information..26

7. Security..27
7.1 Trust in identities ...27
7.2 Trust in resources ...29
7.3 Trust in Data ..29

8. Resilience to Variability in Resource Availability ..31
8.1 Offline Resource ...31
8.2 Byzantine Failures (including malicious users)...32
8.3 System Corruption or Failure ...32

9. Location Awareness ...33
10. Group Support...34
11. Conclusions...35
Security Considerations...36
Author Information..36
Glossary..36
Intellectual Property Statement ...36
Full Copyright Notice..37
References ...38

GWD-Informational 11/19/2004

 3

1. Introduction: The need for a new global infrastructure

It is expected that in future ubiquitous networks that connection and interaction between devices,
systems, services, people, and organizations will be the rule rather than the exception. The
realization of the full potential of all conceivable patterns of interaction and collaboration will
require a sophisticated global infrastructure on top of which service providers can develop their
applications. However, today’s infrastructure is rudimentary, making the development of new
services both difficult and expensive. A new global infrastructure is needed to handle the sheer
complexity of new and varied models of interaction and collaboration.

The scientific and industrial communities both generally recognize this need and have both been
developing core infrastructure for meeting this need. The scientific communities have in general
adopted the Globus framework [11]: a set of tools to enable the creation and management of
virtual organizations. The industrial community has adopted an alternative infrastructure
developed out of the web server technologies called web services[9].

Recently, in the past year and a half, both communities have been working to combine the two
infrastructures: the scientific community has been developing and standardizing the Open Grid
Services Infrastructure (OGSI) [16] on which the Globus Toolkit version 3.0 is based. The OGSI
specification builds on top of Web Services and associated standards but extends their definition
in a few key places. One of the goals of refactoring the Globus infrastructure into a services-
based infrastructure is to leverage industry development tools and runtime infrastructures. It is
recognized that as Grid Computing enters the mainstream, scalability, performance, and open
development environments is essential to its success.

In parallel to these developments, there has been an explosion of interest in both the academic
and industrial communities regarding Peer-to-Peer technologies [5, 13]. Roughly speaking, “the
idea behind P2P computing is that each peer … can act both as a client and as a server in the
context of some appliation” [5]. The peers are typically desktop computers or devices that
interact directly with users. Hence, another phrase that has been used to describe peer-to-peer
computing is: computing at the edge of the network. When peers can communicate with each
other, centralized servers are not needed; therefore peer-to-peer systems are associated with
being more decentralized.

Specifically, a peer in a P2P system is an endpoint for communication. A peer will run on a
device, perhaps a desktop computer, a cellular phone, or a PDA. It exposes one or more
interfaces to other peers and provides some service through the interfaces. The service may be
to provide a proxy for a human user as in the case of instant messaging, or it may be a proxy for
the device on which it is running.

Peer-to-peer systems such as Seti@home [14] and Napster [3] aggregated literally millions of
peers together to create a resource that was undeniably unique in its power and capabilities.
Other systems soon followed with new applications and architectures: Groove Networks,
Entropia, United Devices, Gnutella, etc. On the academic front, interest in peer-to-peer
computing has also been developing out of a need to increase scalability and support wide-area
computing. Technologies such as distributed hash tables, gossip protocols, and network overlays
have been developed and continue to be active research topics.

Recently there have been a number of articles suggesting a synergy between Peer-to-Peer and
Grid Computing [8, 12, 15]. The arguments are both on the applications and the technology front:
peer resources (accessed through peer-to-peer applications) could be an important resource
within the Grid Computing infrastructure; and peer-to-peer technologies could enable larger scale,
higher performance Grid systems. Acknowledging the interest in Peer-to-Peer technologies and
applications, the Global Grid Forum created a research group called the OGSAP2P research

GWD-Informational 11/19/2004

 4

group that was directed to determine how the nascent OGSI framework could support the
development of P2P applications and how these applications could be integrated into a more
traditional high-performance computing (HPC) grid computing environment. This document is the
result of the work of this research group.

1.1 Prototypical Peer-to-Peer Applications

Broadly speaking, the P2P applications community has been focused on three different
application domains: computing, collaboration and file sharing. Computing, also known as
“cycle-stealing” or “PC Distributed Computing”, utilizes otherwise-idle cycles on desktop and
laptop computers for large-scale computation. Condor[1], Entropia [10], United Devices [4], and
Data Synapse [2], each are examples of such P2P computing applications. These systems have
shown that for some problem domains, the volatility, security and data distribution issues can be
resolved such that PC Grids can compete in performance with traditional cluster technology.

P2P collaboration application allow peers to construct and discover ad-hoc groups, join and leave
groups, and perform some shared operations while a member of a group. Groups may be long-
lived, composed of friends, colleagues, and organizations or everybody. Groups may also be very
short-lived and spontaneous when they are groups of people in the same place at the same time.
Sun’s JXTA, for example, builds group support into the infrastructure, enabling applications to
leverage this group support. Groove Networks is another example: they provide integrated
solutions to enable users on desktops or laptops to share and jointly work on documents.

The third class of applications is perhaps a special case of the previous domain: file sharing
applications such as Napster, Gnutella, Kazaa among others, enable a large number of users to
share content. In some cases the content files are small such as music files or images, and the
challenge is to locate any instance of the content quickly among the copies that are available at
that instant; in other cases, the files are much larger and peer-to-peer technology is used to
stream the content to the user from nearby resources.

1.2 This document

The purpose of this document and the OGSAP2P research group is to develop a set of
requirements for Grid Computing standards that will enable the construction of Peer-to-Peer
applications. These requirements are developed based on the experience of the peer-to-peer
computing community.

This document is structured as follows: Section 2 describes each of the six areas of work, Section
3 provides a set of use-cases for a few prototypical P2P applications, Sections 4-9 develop and
explain the requirements for each of the six areas. Finally Section 10 concludes with a summary
of the requirements.

GWD-Informational 11/19/2004

 5

2. Areas of work

In developing the set of requirements, we have identified seven general areas where we believe
that significant differences between Grid Computing and Peer-to-Peer computing exist:

2.1 Scalability

It’s clear that one of the strengths of the peer-to-peer systems is their focus on scale: scale in
terms of the number of resources, the number of users, and the number of administrative
domains covered. When dealing with hundreds of thousands to millions of entities, different
design decisions will need to be made. Architectures will favor decentralization, automatic
bootstrapping, and best effort as means to provide continued service in a highly dynamic
environment.

2.2 Connectivity

The “peers” in peer-to-peer systems are typically desktop computers running in a complex
network environment. In home networks, Internet service providers may block certain types of
network traffic, network address translators may hide resources behind a common name, even
the network address of a peer may change quite frequently. Corporate networks are also
becoming quite complex and the issues described for the home networks are also challenges in
the enterprise. The connectivity requirements explore these issues in greater detail.

2.3 Dynamic and Distributed Discovery.

Discovery services are used in most distributed systems. Sometimes this is referred as lookup
service, given that lookups are sent to servers to discover information (e.g. DNS, directory
servers, etc.). A peer-to-peer system is another type of distributed system, and given its dynamic
and decentralized nature, it depends heavily on discovery mechanisms.

2.4 Security

Security on a traditional server-based grid typically assumes strong user identities, secure
machines locked away in machine rooms, and trusted and knowledgeable administrators. Peer-
to-peer systems, in contrast, have operated in environments where these assumptions are false
and have had to develop alternative mechanisms for achieving security, including community-
based trust (user ratings) and replication and verification. The differences are not just as
functions of the environments, even the goals of the systems are different and in some ways
opposite: server-based grids focus on accountability and auditability while some peer-to-peer
systems focus on anonymity and user privacy. Reconciling these seemingly opposite goals
seems challenging.

2.5 Resource Availability and Failure Management

The requirements with respect to failures are to some degree a function of the scale and security
models of peer-to-peer systems. However, we felt that despite the overlap, there are some
fundamental architectural differences in dealing with the availability and unavailability of
resources that should be explored in its own right. For example, the use of service replicas and

GWD-Informational 11/19/2004

 6

the ability to failover from one replica to another; consideration of alternative failure models over
the simple failstop model; and <other issues?> We explore these issues in the failure
requirements section below.

2.6 Location Awareness

Location Awareness is the capability to leverage proximity, either absolute, relative or contextual,
from within the application. There are a variety of reasons why location information could be
important for the application, from providing location-based services to system-level
optimizations. The former is an important capability in pervasive, ubiquitous computing systems.
In addition, mobile phones have recently been required to provide geographic location information
for emergency 911 calls, and mobile systems providers are already leveraging this capability to
provide prototype location-based services to their users. Examples of location-aware system
optimizations are also abundant: consider the peer-to-peer content deliver network described in
the use cases above. In this application, large files are retrieved from peers that are located
“close-by” in terms of network distance. Grid systems built over commodity networks with
applications that use large files must also address this problem.

2.7 Group Support

Peer-to-peer collaborative systems allow for the dynamic creation and management of ad-hoc
groups. For example, file sharing systems allows a group of families and friends to share photos,
music and even calendars. The groups are created and managed easily without requiring
permission or authority from any system administrators. Access can be given and revoked purely
as a local decision. Such an ability goes to the core of collaboration aspects of peer-to-peer.
We explore these requirements below.

GWD-Informational 11/19/2004

 7

3. Application Use Cases

In order to understand “peer-to-peer” applications and their requirements, we provide a set of use
cases that cover three of the more common peer-to-peer applications: pc grid computing, file
sharing, and content delivery. In addition, we provide a fourth use case describing dynamic
discovery. While not an application per se, discovery services are a common service (similar to
DNS and domain name resolution) required by most applications.

3.1 PC Grid Computing

The overall objective of PC Grid Computing is to leverage the unused processing power of
desktop computers for non-desktop related activities. Such activities may include data services,
compute services or some combination. Here, we focus on compute services.

Figure 1 shows the overall architecture of a generalized PC Grid Computing system. There are
three main actors:

• Users define jobs and decompose a job into a set of tasks that are submitted to the
system. Each task description includes all necessary data file, executables (or their
locations).

• The Desktop Clients receive tasks from the system and manage their execution on the
host machine. The client may run in private networks and may be connected to the
system manager through NATs and/or firewalls. When the task description is received
from the system manager, it may be necessary to download the required files. During
execution of the task, the client may actively or passively monitor the execution, providing
security and trust guarantees.

• And finally, the System Manager maintains resource and capability information regarding
the desktop clients, maintains task resource requirements, schedules tasks to clients,
and manages the overall fault tolerance and system behavior.

Note that different implementations of such a system may implement the actors rolls with one or
more software components and that the components may themselves be distributed, replicated or
centralized. The functions of the system manager, for example, may be implemented by software
running directly on the desktop machines.

The scale of the system may also vary from implementation to implementation, but most
commercial systems are designed for thousands to millions of desktop clients and hundreds of
users. The number of tasks and duration of each task are such that the resources are kept busy,
typically the duration must be much longer than the time to move data from the user to the client.

GWD-Informational 11/19/2004

 8

Figure 1: Generalized Architecture of a PC Grid Computing System.

We describe the following use cases:

• User submits Job,

• User Queries the System Manager for Status,

• Desktop Client Joins the System,

• Desktop Client Executes a Task,

• Job Completes and results are returned to the User,

• Desktop Client Leaves the System,

• Desktop Client fails.

3.1.1 User submits Job

A user interfaces to the system through a desktop computer. This computer may or may not
function as a execution resource (for the purposes of this document, we assume that it does not).
There may be a single user (eg. seti@home), or a many users (we assume many users).

A job is a computational task that the user wishes to execute. A job is composed of a set of
tasks, where each task is a single computational unit. Job decomposition may or may not be part
of the PC Grid Computing system, and may range from trivial (eg. parameter sweep style jobs) to
quite difficult (database decomposition).

The job is decomposed into a set of task descriptions, that includes all the information necessary
to execute the task: command executables or locations where they can be found, input
parameters, input files or their locations, required output files or their locations, and resource
requirements. These task descriptions are sent to the System Manager for scheduling and the
System Manager returns a unique job ID for that batch of tasks. The JobID can be used to query
the System Manager for the job status.

Note: there may be a firewall or NAT between the User and the System Manager.

GWD-Informational 11/19/2004

 9

3.1.2 User Queries the System Manager for Status

Using the jobid returned by the System Manager for a previously submitted job, the user can
query the system to determine the status of the set of tasks. The System Manager returns the
job statistics (number of tasks completed, number of tasks currently being executed, number of
tasks pending, number of errors, etc).

Note: there may be a firewall or NAT between the User and the System Manager.

3.1.3 Desktop Client Joins the System

When a new Desktop Client joins the system (that is, when the client installs the PC Grid
Computing Client software), the software first determines the resource characteristics of the
machine: laptop versus desktop, operating system and version, available RAM and disk,
processor speed, etc. These resource characteristics are sent to the System Manager that
records the characteristics of the machine, its current IP address and generates some unique
client ID that is returned to the software.

The client ID is used for all future communications with the System Manager. Note: the client ID
cannot be the IP address of the machine, since in this environment, IP addresses may change
dynamically. By tagging all communication by a unique client id, the System Manager can
identify client machines as their IP addresses change.

After receiving the client ID, the client and System Manager periodically communicate to ensure
that the client is available.

Note: there may be a firewall or NAT between the Client and the System Manager.

3.1.4 Desktop Client Executes a Task

When the System Manager schedules a task for execution by allocating the task to an
appropriate client. The client, through either a push or a pull mechanism, receives the task
description and downloads the necessary files (input files, databases, executables, etc). The
client then launches the task typically in some type of sandbox, where the client software can
have tight control of the task’s execution.

The client software monitors the execution of the task, either through active or passive
mechanisms. Passive monitoring simply executes the job and notifies the client software then the
job is complete. Activie monitoring ensures that the task does not cause any interference with the
desktop user and if so, kills or pauses the task. The client software may also employ techniques
to protect the application from the desktop user: file encryption and hidden directories are some
of those techniques.

The task may need to communicate with other tasks during its execution. For example, when
running tightly coupled MPI applications, communication from one desktop client to another may
be necessary.

When complete, the a signal is sent to the System Manager that the task completed, and the
resulting files (or locations) are copied to their external locations, as described in the task
description.

GWD-Informational 11/19/2004

 10

If the desktop client is a laptop, it may disconnect from the network and continue to execute the
task. When the task is complete, the client software waits until the network is available, then
sends the notification to the System Manager. When disconnected, communication with other
tasks is not possible and the task blocks.

If the desktop client is rebooted, the client software is automatically restarted and the task is
either continued from a checkpoint file (if available) or restarted from the beginning. If tasks are
communicating, then restarting a task due to failures must be done in such a way to ensure
consistency and validity of the results.

Note: there may be a firewall or NAT between the client and the System Manager and between
any two clients.

3.1.5 Job Completes and results are returned to the User

When the set of tasks are complete, the result files, and return codes are sent to the user’s
desktop machine. Future queries of the task show the task as complete.

3.1.6 Desktop Client Leaves the System

A desktop client could leave the PC Grid Computing system for a number of reasons, both
expected and unexpected. Expected leaves can occur when the software is uninstalled, or the
machine is gracefully halted. Unexpected leaves can occur if the machine crashes or has a hard
stop. In the first case, the client software can send a notification to the System Manager that the
client machine will no longer be part of the PC Grid Computing system. In the latter case, the
periodic communication to or from the System Manager will eventually detect that the machine is
no longer responding.

3.1.7 Desktop Client fails

Desktop clients may fails for a number of reasons: the desktop user may have turned off the
machine, the client machine may crash (desktop machines crash more often than server-class
machines, or the desktop user may simply uninstall the software. In all cases the system
manager must (either pro-actively or reactively) reschedule the task that was running on that
client.

3.2 File Sharing

File Sharing applications such as Napster and Gnutella are still the most popular peer-to-peer
applications in the peer-to-peer space with on the order of millions of users (Napster alone had by
some estimates over 57 million individual users). Figure 2 shows a generalized file sharing
application. It consists of a number (perhaps millions) of Users and a System Directory.

• A user has an computer or device that represents it within the network. It holds files that
are “shared” with others and provides the user with means to search and download
others’ files.

• The system directory maintains information about each user/peer, and about each file
that is shared in the network. It also provides a mechanism to search the set of files.

The users may belong to a number of different Groups, where each Group has a unique name.
Users have files that they share with other members of groups to which they belong. Groups may
be created dynamically by any user who is then identified as the “owner of the group”. The
owner of the group can control the subsequent membership of that group. All users belong to

GWD-Informational 11/19/2004

 11

the special group “allusers”. The System Directory maintains the list of groups, their owners and
members, and some metadata of the files that are shared for every user and group. The System
Directory allows users within a group to search for files of certain type or content. This directory
is a logical entity. It may be implemented in either a centralized way with a single group that
includes all users (eg. Napster), or in a distributed fashion (eg. Gnutella). We make no
assumptions about implementation.

Figure 2: Generalized File Sharing Application

Use cases:

• User joins the network and logs in,

• User creates new Group,

• User joins a group,

• User publishes files to a group,

• User searches for and downloads files from a group,

• User leaves the network.

3.2.1 User joins the network
The user installs the client program on the computer or device and initiates it. The client program
contacts the system directory and registers with it the system capabilities of the device (eg.
bandwidth, CPU, etc).

3.2.2 User Creates a New Group
Any user in the system may be able to create a new group. The user runs a client program on his
or her desktop computer that connects to the system and authenticates the user. The user can
then request a new group to be created with a particular group name. A group is created by the
System Directory on behalf of the user who is then acknowledged as the “owner of the group”. A
group has a group name and a group id. The name is arbitrary, but the group id is unique and
assigned by the System Directory and returned to the user’s client program. The user is
automatically added as the first member of that group.

GWD-Informational 11/19/2004

 12

The group name and id are stored on by the System Directory and are indexed so as to enable
discovery by other users. Groups may be hidden or visable, and have open or closed
enrollments, all defined by the user at the time the group is created. Visible groups can be
discovered by other users not in the group, hidden groups can not. Open-enrollment groups
allow any user to become a member automatically, closed-enrollment groups require approval
from the owner.

3.2.3 User Joins a Group
In order to join a group, a user must either know the group id of the group he/she wishes to join,
or search through the directory of visible group stored by the System Directory. The user then
issues a join request to the System Directory.

If the requested group has an open enrollment policy, the user is automatically added. If it is
closed, the user is marked as “wanting to join” and awaits approval from the owner of the group.
Once given, the user is added to the membership.

Once a member of the group, the shared files that the user has on his desktop computer are
indexed and their metadata are sent to the System Directory to allow other member of the group
to discover them.

3.2.4 User Shares Files Within a Group
Once a user is a member of a group (and note that all users are members of the special group
“allusers”), they can search for content (ie files) that are shared among all the members of that
group.

Using the client program on the users desktop machine, the user contacts the System Directory
with the search criteria. The System Directory returns to the user’s client program a list of
member that have a related file and that are currently connected and logged into the system. The
user’s client program can then contact the “peer members” directly and request a copy of the file
of interest.

If the peer member disconnects or logs off, then the user’s client program must retry the transfer
with a different peer member.

Note that most users are likely to have firewalls or NATs installed between themselves and the
System Directory.

3.2.5 User Searches for files within a group
Once joined to a group (or set of groups), the user can search for files owned by other users in
the group. The user’s client program typically provides some query interface to the system
directory. The user inputs his search criteria and the client program contacts the system directory
that performs the search. The client program returns the results (possibly along with other
metadata such as location) to the user.

After selecting the set of files, the user can download them directly from the other peers.

3.2.6 User leaves the system
A user may uninstall or stop the client program. In such a case, the system directory updates its
information and removes the files located on that machine from future searches.

3.3 P2P Content Delivery

Peer-to-peer content delivery addresses the problem of delivery of large files from a single source
server to multiple client destinations. In general, Content Delivery Networks (CDNs) (ref akamai)

GWD-Informational 11/19/2004

 13

use specialized content caches located throughout the network to deliver common content such
as large images, software updates, or streaming media. Doing so reduces the bandwidth
bottleneck at the originating server and improves performance from the client’s perspective.

Peer-to-peer content delivery applications are based on the same idea, but instead of using
specialized machines that serve as caches, they use the client’s themselves. Figure 3 shows the
general idea:

• The Server is the publisher of the content.

• The Client is the consumer of the content that is published on the server.

When the client on the left requests the same content from the server. Instead of pushing the
content through the internet once again for the second client, a peer-to-peer content delivery
network would redirect the file transfer to the first client who, after all, has an identical copy of
content. This redirection is seem-less to the second client and the operation completes faster
(since the bandwidth within the enterprise is typically larger than the internet) and more cost
effectively (since no bandwidth is used by the server).

In order to provide this redirection, the server actor must store for each published content C, the
set of clients that have a copy of C, the network locations of each of the clients, and the
characteristics of each client. When it receives a request for C, the server must redirect the
request to an appropriate client.

The clients in this use case, are home or work desktop machines. One or both of the clients may
be behind NATs or firewalls and may have restrictions on bandwidth (eg. home user connected
over dialup). The server is typically in the public IP space and is a server class machine.

Figure 3: Peer-To-Peer Content Delivery

We consider the following use cases:

• Client retrieves the content file from server (no peer caches are available),

• Client retrieves the content file from a peer cache at client1.

3.3.1 Client Retrieves Content Directly from Server

For this example, the server holds the content file marked C and receives a request for C from
client1. Client1 is situated within an intranet, perhaps a corporate network. The content may be
a large file such as a streaming media file, or a software update. C has meta-data associated

GWD-Informational 11/19/2004

 14

with it that describes the version information and is not updated by the clients (ie, the content is
read only).

Client1 sends a request to the server for file C. They Peer-to-peer Content Delivery Network
intercepts that request and determines that there are no peer caches that hold C. Therefore, the
request is sent directly to the server who then sends the file to the client.

When C is received by the client, the client software creates a peer cache at the client and stores
both the content and metadata associated with the content. The P2PCDN is updated with
client1’s new cached information.

3.3.2 Client Retrieves Content from Peer Cache
When Client2 requests content C from Server, the P2PCDN again intercepts the requests and
determines that C is available from a nearby peer. The content request is redirected to client1
and C is retrieved. Client2 then also becomes a peer cache and the P2PCDN system is updated
to reflect this cache for future requests.

3.4 Discovery

A characteristic commonly shared in distributed systems, and in particular in peer-to-peer
systems, is the ability to dynamically discover other peers in the network, as well as other
resources and information. In this particular scenario, although discovery applications could be
created, we mainly emphasize the fundamental need for a discovery service that most peer-to-
peer applications utilize.

As can be seen in Figure 4.a., three physically partitioned groups of peers are shown: the first
group consists of peers distributed across the Internet, the second group consists of peers on a
local area network that is disconnected from the Internet (e.g. a corporate intranet), and the third
group consists of peers on a wireless network that is also disconnected from the Internet. A
number of these peers have joined a logical group called Group1. Since the peers are physically
disconnected, none of them can see all of the peers in Group1. However, each peer that joins
Group1 can discover the members of Group1 within their physical partition.

GWD-Informational 11/19/2004

 15

Figure 4.a: Discovering Group1 and its peers in three disconnected group of peers.

We describe de following use cases:

• Peer joins the network.

• Peer discovers peergroups in the network.

• Peer joins a particular peergroup.

• Peer discovers other peers in peer group.

3.4.1 Peer joins the network.
A user decides to become a peer in a peer-to-peer network. Specific software is run on the user
node, and after the corresponding authentication process, the user logs in to the peer-to-peer
network with a particular peer identity or as an anonymous peer. This peer is now part of the
peer-to-peer network and can discover other peers and peergroups in this network. In figure 4.a,
the new peers will be able to discover only those peers that are connected to the specific
network.

3.4.2 Peer discovers peergroups in the network.
A peer that have logged in to the peer-to-peer network utilizes the discovery service to find the list
of available peergroups. After the peer receives a list of existing peergroups, it can select one or
more peergroups from the list, and join them. In figure 4.a, the peergroup that is discovered is
Group 1.

3.4.3 Peer joins a particular peergroup.
A peer can request to join a particular peergroup. Depending if authentication is required for this
peergroup or not, this peer might need to authenticate when joining a group. In this case, the
group to join is Group1.

GWD-Informational 11/19/2004

 16

3.4.4 Peer discovers other peers in peergroup.
Once a peer has joined a particular peergroup, it could discover other peers that are part of this
group, or other peergroups that are subgroups of this group.

In the previous set of use cases, the peers are able to discover peergroups and their peers, as
well as discover part of the peer-to-peer network topology (at least a portion of it). It is important
to note that there is no assumption made on the type of computing device a peer is using, the
type of network access that each peer has, or the different security and network
devices/appliances that are used on the underlying communication infrastructure. It is also
important to note that no initial knowledge about the peer-to-peer network, its active peers or the
available services is assumed – they could be discovered dynamically.

Figure 4.b includes the same group of peers as in the previous figure; however, this time at least
one peer of each group is connected to the same network, making all peers part of the same
peergroup “Group1”. In this scenario any peer can discover the different services/resources (i.e.
grid services) installed on a particular peer, or on Group1 it self.

Figure 4.b: Discovering Service Y in Group1. All peers are virtually connected.

We describe the following use cases:

• Peer sends a query to the network

• Peer may or may not receive a response to the query

3.4.5 Peer sends a discovery query to the network
Peer 9 needs to determine if a particular service Y is available in Group 1. To do so it sends a
discovery message that queries the different peers in Groupo1. If Service Y is found it should be
able to obtain the service characteristics, availability, access policies and so forth.

3.4.6 Peers that receive such query may or may not respond.
As the discovery query propagates through the peer-to-peer network, peers that are part of
Group1 and know the result of such query could reply with an answer back to the request.

GWD-Informational 11/19/2004

 17

4. Scale

One important distinction between traditional grid computing and peer-to-peer computing is in the
scale of the resources, both the sheer number of resources and the geographic distribution of
those resources. Peer-to-peer applications are scaling to hundreds of thousands if not millions of
users (SETI@HOME, instant messaging, etc) spread across the globe. To deal with this scale,
P2P systems have successfully employed decentralized architectures (eg gnutella) that are
capable of surviving in a very dynamic environment. In this section, we explore the different
dimensions of scale.

P2P systems and grid systems must be capable of dealing with more-or-less infinite set of
resources. This may be impractical, but is very necessary. There is active discussion and initial
implementations of systems whose goal is to persist datasets for over a hundred years. In
addition, the grid services community considers each and every file on a particular machine to be
a separate resource. Therefore, thousands to millions of files on any modern computer times
thousands to millions of computers connected to the internet times hundreds of years is
effectively unbounded.

While determining the total number of resources is less than fruitful, there are some tighter
bounds and other properties that can be determined.

The number of active resources in a system is roughly 10^12. Certainly, the largest systems that
we see today fall well within this bound. The active number of machines in Seti@home is in the
hundreds of thousands

The resources exhibit a high Churn Rate, that is, as many as 50% of the resources come and go
within the system in a 24-hour period. With laptops, PDAs and cell phones, that rate will likely go
higher.

4.1 Number of Resources

The belief within the OGSA community is that everything will be a service. This includes
applications, files, and instruments. If we consider just the files, there are roughly one million files
on any particular machine. If we assume roughly one million machines, then the total number of
resources is 10^12.

4.a Scalability in the number of resources 10^12.

4.a.1 Unique naming of the resources.

4.a.2 Resource Discovery of resources (see resource discovery section).

4.a.3 Accounting and logging resource use.

4.2 Number of Users

Current grid systems have on the order of hundreds of users. As grid technology enters the
mainstream, it could have many millions of users. Peer-to-peer systems with millions of users
include instant messaging and file sharing applications.

4.b Scalability in the numbers of users in the system 10^6.

4.b.1 User certificates and issues of trust

GWD-Informational 11/19/2004

 18

4.b.2 Access control

4.3 Number of Organizations

Current grid systems support 10’s of organizations, but need to scale in the short term to
hundreds of organizations and thousands of organizations in the long term. Currently,
establishment of a VO is difficult and requires significant and ongoing co-operation among
systems administrators at each site. For example, globus user mapfiles must be shared amongst
the members of the VO, and grid software installations must be configured to accept certificates
from other certificate authorities. Once configured, the trust is complete; there are no gradients of
trust based on different organizations. It may be desireable to authenticate and authorize access
to services dependent on attributes such as organizational membership and reputation.

In addition to the shear number of organizations in the VO, as many grid systems become
operationa, a related issue is an organizations membership in multiple VOs. In this case, a
single resource may be accessible to users in both VO’s. Currently, such partitioning of a
resource in multiple grid systems is not possible.

4.c Scalability in the numbers of virtual organizations the thousands, 10^3

4.c.1 Simple low-overhead mechanisms to allow an organization to join the VO.

4.c.2 Mechanisms to allow a single organization or resource to be a part of multiple VOs.

GWD-Informational 11/19/2004

 19

5. Connectivity

A driving premise behind peer-to-peer computing is the access of computational resources, data,
and services at network edges in a transparent manner to applications and users while lowering
the total cost of ownership and participation. To permit decentralized sharing of computing
resources, collaborative workspaces, information and services, it is necessary for the peers at the
edge of the network to communicate with one another and with the services at the heart of the
networ. Therefore ensuring communication is possible in a bidirectional and transparent end-to-
end manner is critical to the success of peer-to-peer computing over and between public and
private networks.

Over the past few years, security, resource availability and cost issues have required the
widespread deployment of mechanisms that impede communication between peers on the
internet – that is, reduce end-to-end network transparency. Today it is arguable that nearly every
user’s access to public Internet web services and information must pass through one or more of
these devices. These mechanisms, known as Network Address Translators (NATs) and firewalls,
often accommodate client-initiated client-server usage models, but they prevent transparent, bi-
directional peer-to-peer communication.

Furthermore, the edge of the network may have fundamentally different characteristics than
traditional server-based environments. For example, data communication over wireless phone
networks may have a significantly different cost model that should be considered before sending
arbitrary data. Caching and replication policies may also have to be adjusted to take into account
different available bandwidth capability.

In this section, we examine the issue of connectivity in greater depth and derive some
requirements that need to be met for grid services to be used as foundation for peer-to-peer
applications.

5.1 Network Address Translators (NATs)

A NAT typically resides at network domain boundaries and translates network addresses from
one network domain to another. NATs are most often used to share limited IP public network
addresses and/or to translate addresses between two networks with incompatible address
domains. Two such domains are the public IP address domain and the private IP address
domain. Addresses in the public IP address domain must be assigned through an Internet
Assigned Numbers Authority (IANA) and are routable and guaranteed unique from any connected
component of the Internet. IANA has also reserved three blocks of IP addresses for private
networks. Addresses within these blocks are routable and unique only within the scope of the
private network in which it belongs.

Hence, to route packets from one domain to another requires the use of a NAT that has two
interfaces, one in each of the address domains that it maps between. Figure 4 shows a common
scenario where NATs are used. The ISP allocates one public IP address for use
(132.235.95.202). A NAT runs at this address and in addition has an address in a private
network (192.168.1.1). When a client in the private network (say 192.168.1.102) initiates a
connection to a server in the public network (www.globus.org), those packets are routed through
the NAT. The NAT rewrites the source address in the packet headers from 192.168.1.102 to
132.235.95.202 and stores the mapping in memory. When the server receives the connection
request packet, it replies to the source address, now 132.235.95.202. The reply packet is
received by the NAT that provides a reverse mapping using the in-memory table and rewrites the
destination address of the reply packet as 192.168.1.102 that is routed in the private network to
the correct client.

GWD-Informational 11/19/2004

 20

Note that because the NAT modifies the packets in route to the destination, security mechanisms
used to detect whether packets have been tampered with and that include the header addresses
will in general fail. IPsec is one such protocol. It carries a checksum computed over the entire
header of the packet. Hence, modifications of the source address will cause the packet to fail the
security check.

5.a No use security protocols that create checksums that include the header.

Figure 4: A common setup using a NAT to bridge a private network with a public (ISP)
network.

There are many different types of NATs, including a traditional or outbound NAT (described
above), network address and port translators (NAPTs), Bi-directional or two-way NATs, and twice
NATs. Except for Bi-directional NATs, the basic problem with NATs is that they do not allow
connection establishment from the external network into the private network, and hence block bi-
directional communication capability.

The use of a NAT imposes several difficulties for Grid Services in particular. In the example in
Figure 4, assume that two grid services are running, Grid Service A on 192.168.1.102 in the
private network and Grid Service B running on www.globus.org in the public network. When A
starts and registers itself in the registry (not shown in the picture but located in the public network)
it registers its WSDL and grid service handle. While the NAT has rewritten the TCP packets
involved in the registration process, the NAT only modifies the headers while the grid service
handle is in the payload of the packet and is not modified. Therefore, when registering with a
registry outside of the private domain, grid service A may register itself with the incorrect (or
inaccessible) handle.

In general, whenever a WSDL document traverses a network domain boundary, its content must
be rewritten so that the endpoints remain valid in the external domain.

5.b A WSDL document that traverses a network domain boundary must be rewritten so that
the endpoints remain valid in the external domain: ALG-GS.

This is a common problem for various protocols and there are some existing techniques that can
accomplish this. A NAT can be configured with various optional Application Level Gateways
(ALGs). Common ALGs include ALG-DNS for domain name information and ALG-FTP for
dealing with the FTP protocol.

GWD-Informational 11/19/2004

 21

Even after registration, the external grid client will not be able to initiate communication with the
grid service. The NAT requires the communication to be initiated by the host inside the private
network. So therefore, grid service B acting as a client will not be able to communicate with grid
service A. Furthermore, grid service A will be restricted even as a client: third party transfers
(such as with gridftp) and delivery of notifications will not be possible. Consider an example in
Figure 5. Grid Service A requests a file from grid service B that in turn uses a third-party grid
service C to perform the transfer. In such a case, a traditional outbound NAT considers the
communication from C to A as an initial connection request and will not forward the packets to
grid service A.

Figure 5: Example of a third-party transfer.

One typical solution to this asymmetry is to use rendezvous servers or simple relay mechanisms
and have the host in the private network poll for messages to these intermediary services. The
grid services infrastructure should support these solutions as well. Figure 5 shows an example of
such a solution. A general grid service proxy runs in the public address domain and acts as a
collection point for SOAP messages sent to grid service A. Grid service A periodically polls the
proxy and retrieves the messages and responds as appropriate.

With this solution, the following capabilities are necessary:

5.c Support for proxy forwarding.

5.c.1 Automatic tooling of grid service A to poll for messages at its proxies

5.c.2 An endpoint proxy should be constructed and store SOAP messages until the grid
service can collect the messages.

5.c.3 Grid service clients should be able to tell if the service it is using is behind a NAT.

The use of these intermediaries, however, is neither ideal nor complete. If both the grid service
and the grid client are behind NATs, then the store and forward solutions can become complex
and unscalable. In addition, multiple levels of NATs are becoming common as ISPs are
beginning to use NATs for their domains as well. This is not a problem specific to grid services.
This is a general network connectivity problem present for many application frameworks. There
exist many developing standards that try to address this issue, from the Universal Plug and Play
(UPnP) to the IETF. As solutions and protocols are developed, the OGSA framework should
support industry solutions.

5.1.1 Universal Plug and Play (UPnP)

In October 1999, the UPnP forum created the Internet Gateway Devices working group to
address this problem for the home/SOHO environments. Briefly, the protocols developed will

GWD-Informational 11/19/2004

 22

allow NATs to be detected by clients within the private network, and allow port forwarding to be
programmatically configured by applications. Thus UPnP will require application modifications to
be effective.

5.d Support for UPnP detection and configuration.

5.1.2 IETF Middlebox
There are a number of emerging standards for traversing NATs.

5.e Support for middlebox (IETF) solutions to the NAT problem.

5.f Support for Teredo.

5.g Support for STUN

5.2 Firewalls

Firewalls are security devices that selectively filter (pass or drop packets) inbound and outbound
network traffic based on site rules and policies. Firewalls employ three basic techniques: packet
filtering, proxy services and stateful-inspection. A packet-filtering firewall examines network traffic
passing through it and selectively passes or drops the packets. Proxy service firewalls also
examine and filter packets but also act as a relay between hosts behind the firewall and the
external network domain. Therefore, a proxy service firewall must perform address translation
functions similar to that of a NAT. Finally, stateful-inspection firewalls monitor communication
protocol and application-level state and develop a detailed context that is then used to more
carefully inspect the communication protocol stack, enforce security policies, and anticipate
protocol communication actions and requirements.

Typical firewall configurations allow http-based packets, that is, packets destined to or from port
80, but may drop packets destined to other ports. Http-tunneling refers to the use of http ports for
non-http-based applications. Because the firewalls are typically configured to allow such packets
through, the applications simply encode the application-specific protocols as http requests and
replies.

5.f Support for HTTP Tunneling.

This requirement may not be very important as system administrators are become more savy
about HTTP Tunneled data. Solutions that work with the needs of the administrators (as opposed
to circumventing their precautions) are needed.

5.3 DHCP

Another issue common in peer-to-peer environments is lack of fixed IP address assignment. In
many environments IP addresses are assigned by DHCP (Dynamic Host Configuration Protocol)
servers or may be provided by the NAT directly. When a machine boots up or is connected to the
network, the machine broadcasts a IP address request to the DHCP server that assigns a IP
address and possibly a resolvable hostname to the machine for a given reservation period. After

GWD-Informational 11/19/2004

 23

the reservation period has expired, the machine will renew its request. The renewed address is
not guaranteed to be the same as before.

In peer-to-peer environments there is evidence to suggest that this is not a trivial or limited
problem. In [6] the authors examination of IP address aliasing finds that

- 40% of hosts use more than 1 IP address in the span of a single day,
- 32% of hosts use 5 or more IP addresses (over the course of the 15 days that they

measured).

If addresses are changing on a daily basis, it’s not enough to use soft-state mechanism (such as
time-out and re-registration). Some mechanisms need to be provided to reroute messages as
IP addresses change.

5.g Support for IP address changes.

Supporting IP address changes brings up other issues:

• Should the client be notified of the change and manually renegotiate, re-register, etc? or
should the change be completely transparent?

5.4 IP Address Mobility

IP addresses may change also due to physical movement of the machine from one network to
another. This is the case when a laptop user moves from one place to another. In many
corporate environments, the use of laptops far outpaces the use of personal desktop machines
and therefore must be supported.

The requirement to support mobile systems is the same as in the previous section: no new
requirements are needed. It should be noted however, that IP address mobility is not the same
as MobileIP which is a particular solution to the problem of mobile users but operates at the IP
layer.

5.5 Network characteristics and peer profiles

Peers will be running in all sorts of different computers/devices and it is not known ahead of time
what kind of characteristics they would have. They could certainly have smaller resources
available or if not smaller, maybe the cost of using them is higher. In the same area, network
characteristics could be very different from one peer to another peer. Latency, bandwidth,
reliability, cost, are some examples of possible factors that need to be considered when
connecting two peers together and before they agree to start exchanging information. For
example:

• Two peers that want to communicate have very distinct bandwidth to access the Internet.
(Cell phone vs. PC using DSL)

• Some peers will have limited resources (i.e. no storage or very limited, like a PDA)
• Some peers may not even have a hard disk
• For some peers, reception cost might be higher (cell phone receiving a big file)
• Some networks are less reliable
• Some peers need to transfer data faster

These factors should be considered when a peer participates in grid, and it will very likely be
related to QoS, SLA and policies.

GWD-Informational 11/19/2004

 24

5.h Should be possible to determine the characteristics of a peer and its environment, and
use it as a basis to establish the communication attributes and quality of the service.

GWD-Informational 11/19/2004

 25

6. Dynamic distributed discovery.

Discovery services are used in most distributed systems. Sometimes this is referred as lookup
service, given that lookups are sent to servers to discover information (e.g. DNS, directory
servers, etc.). A peer-to-peer system is another type of distributed system, and given its dynamic
and decentralized nature, it depends heavily on discovery mechanisms.

It is important to note that a discovery mechanism can be implemented in different ways. It could
be completely distributed - where each peer utilizes discovery to find peers and resources with
zero dependencies on servers; distributed with supernodes - where each peer can do its own
discovery but could rely on supernodes; use a proxy - where a peer depends on a proxy to do the
discovery; centralized - where a peer depends on a central server to discover peers and
resources, and store this information.

Peer-to-peer systems have very particular characteristics when it comes to connectivity,
availability, and scalability (as described in the use cases and in previous sections of this
document), and some of the derived discovery requirements fall in these areas.

6.1 Connectivity

In peer-to-peer systems, network partitions or partial disconnects are frequent, and this leads to
the existence of islands of peers that are isolated for a period of time. In some cases, disconnects
are sometimes short, and some other times long, sometimes unplanned, and sometimes planned.
This type of connectivity imposes specific requirements in terms of discovery, given that peers
are not guaranteed to have access to specific servers (i.e. name servers, directories, etc.) at all
times.

Note: this has nothing to do with server’s availability.

6.a Discovery service should function properly in a disconnected network.

6.2 Availability

Lack of availability, sometimes due to the same connectivity characteristics described above,
doesn't necessarily mean that a peer crashed or failed. Sometimes it means that a connection
path does not exist; some other times means that the peer has gone into maintenance mode, and
that general access is restricted; and some other times that the peer is overloaded and cannot be
available until some resources are freed up. Regardless if a particular peer is completely
available, available with restrictions, or not available at all, it is necessary to being able to
discover the unavailability reason and status. This availability information will need to be
considered by other systems and peers, before making assumptions about the status of a
particular service that is running on a peer.

6.b Discovery service should be able to determine the status and level of availability of
peers and resources.

6.3 Scalability

In the scalability area, given that one characteristic of a peer-to-peer system is its potential to
scale to millions of peers, it is necessary to have an efficient distributed discovery mechanism
that scales. Refer to requirement 4.a.1.

GWD-Informational 11/19/2004

 26

6.4 Initial peer discovery

Discovering a peer is the most basic function in a peer-to-peer network. Without this function a
peer-to-peer network cannot be established. This initial discovery or bootstrap process could be
accomplished in many different ways, and could go from being completely static to being
completely dynamic. For instance, discovery could be accomplished by having a local list of all
the peers in a file, by querying a central directory, or by utilizing a broadcast mechanism.

6.c Dynamic peer discovery, without utilizing a central server or static mechanism, should
be possible.

6.5 Discovering other resources

Once several peers have been discovered and a peer-to-peer network exists, it is necessary to
have a discovery or search service that allows a peer to discover resources and services that
others peers provide and that are willing to share. Given that in a peer-to-peer network not every
visible peer is directly accessible (i.e. a virtual connection is established through a rely or proxy),
it is necessary that the discovery mechanism be able to discover resources on peers to which a
direct network connection cannot be established.

6.d Discovering resources on the network should be possible without being restricted by
network topologies, appliances and firewalls.

6.6 Discovering Virtual Organizations

A virtual organization as defined by OGSA maps closely to a peergroup. Peergroups will be
created and destroyed dynamically, and they could live for a long time or for a short time. Peers
could join and leave peergroups often. The concept of peergroup or VO is an abstract concept,
and it is not necessarily associated with a peer, or with a resources. This brings the issue as to
how can it be discovered, given that peer that created it, or the resource where it was initially
created might not be up, or may not even exist any more. To cover this case then, it is necessary
for the discovery mechanism to be able to discover peergroups or VOs or any other “abstract
resource” (if we could define it like that).

6.e Discovering Virtual Organization (i.e. Peergroups) or other abstract resources should
be possible.

6.7 Discovering other peer information

Peers might have specific information that other peers or services might be interested in obtaining
or monitor. This could be some kind of peer meta-data, like peer characteristics, version,
services, etc. It is not clear yet if a peer can be considered a resource, or if it could be
represented as a Grid Service.

6.f Discovering other peer information should be possible.

GWD-Informational 11/19/2004

 27

7. Security

Peer to peer systems also bring a set of unique security requirements that stem for the fact that
peer-to-peer systems must deal with looser notions of trust than server-based grid environments.
In the server environments, there is an assumption of trust in the actions of the administrators
and between the administrative domains. It is assumed that the host certificates are valid and
secure; that the users have been validated before user certificates are issued; and that the
software functions as advertised. The challenge for building peer-to-peer systems is that none of
these assumptions hold.

7.1 Trust in identities

In server-based environments, users are assigned identities that are tied to their employment at
the organization. The validity of the accounts is (usually) determined by direct interaction and an
effort is made to ensure that exactly one account is created for exactly one user. Trust in this
setting is given to users because accountability is provided by the system. Malicious users can
be traced to their person and can affect their access, their employment, or in some cases even
their liberty.

When the system scales beyond the capability to personally verify a user, such as a web-based
community, alternative mechanisms for allocating trust have been developed. As an example,
consider Ebay. A single user may have multiple accounts and the existence of an account does
not immediately convey any trust. Instead, community-based trust has developed that allows
every other user in the system to rate the trustworthiness of every other individual in the system.
While a single malicious user may impugn a trustworthy person, the law of large numbers
ensures that the averages will bear out the trust. Using this mechanism, trust is earned based
on the number of transactions and the quality of the results of the transactions. There is some
accountability in these systems (credit card verification), however, in many other communities,
the only punishment for malicious users is expulsion from the community. Even this is not
guaranteed since the user may just create a new identity.

In peer-to-peer environments it may be necessary that community based trust does not depend
on a centralized server to manage peers' reputation. It is also important that the absence of a
reputation system does not prevent peers from interacting with each other, if trust is not required.
However, when trust is required, and it is based on peer's reputation, it is necessary that the
reputation system be available all the time, thus making a explicit requirement for reputation
being part of the peer-to-peer infrastructure.

A reputation system consists mainly of three parts (i) the peer that performs an action and gets
rated (2.a.1), (ii) the peers that use some other peer's rating information to decide if they would
like to interact with such a peer or not (2.a.2), and (iii) the infrastructure or network used to
distribute peer's reputation.

The reputation model depends heavily the infrastructure that is used to distribute the reputation
information through the network. If the reputation model is embedded in the communication
protocols used to connect peers, then reputation will be part of the infrastructure and easier to
include and use in peer-to-peer networks (2.a.3).

It is important to distinguish the type of peers that is being rated because, we could be rating
devices, applications, or users. For example, we need to distinguish for a particular peer which

GWD-Informational 11/19/2004

 28

starts flooding the network, if it is because the device has gone wrong, the application is intended
to do that or the user is doing an attack.

<I don't think peer classification is covered in the taxonomy paper – we might need more here>

If a reputation model for trust is used, it is necessary to have a classification of peers/users and
distinguish for what type of behavior the reputation is being built.

Behavior for which peer trust can be built:
- Peer's network usage
- Peer's bandwidth
- Peer's responsiveness
- Peer's quality of responses
- Peer's overall presence
- Peer's reputation as perceived from other peers
- Peer's reputation based on existence
- more...

6.a Community-based trust

6.a.1 Allow users to rate other users’ trust as a function of actions.

6.a.2 Allow users to query the aggregate level of trust as a function of actions.

6.a.3 Support for reputation networks or other type of non-centralized reputation
infrastructure.

6.a.4 A peer can be bound for specific behaviors to be tracked and rated, depending on its
nature and classification.

Establishment of identities is another area where there may be some unique requirements,
although some of these issues are coming to a head even in existing server-based grids. The
basic issue is centralized versus decentralized creation of user identities. Centralized
mechanisms don’t scale as the number of organizations increases and requires the user to
manage multiple identities (one for every grid). For example, some grid system includes a
centralized certificate authority that provides user certificates to each user of the grid. So in
addition to the local organization username and password, the user must maintain the grid
username and password. The more grid systems the user is associated with, the more identities
he or she must manage. A decentralized approach requires each individual organization that
participates in the grid to issue its own user credentials (for example, by running its own
certificate authority). The grid resources then are configured to accept certificates signed by each
of the participating certificate authorities. This decentralized approach has the advantage of
allowing each organization to independently assign user identities as they see fit and is simpler
for the end-user. As systems scale in the number of organizations, decentralized identity
establishment will become increasingly important.

6.b Decentralized identity establishment

A third issue related to user identities is anonymity. While access to grid resources requires user
verification and authorization, there are some applications where it is important that the users are
anonymous. As an example, consider a local government grid and the application of voting. It is
key that each user only is able to vote once and only if they are authorized to do so. But it is
equally important that the application cannot in any way determine which users issued which
votes.

GWD-Informational 11/19/2004

 29

6.c User identity anonymity

6.c.1 A user should be able to shield his/her identity from the service, if desired, when using
the service.

6.c.2 An anonymous peer should be able to use specific services by being member of an
identified and trusted peer-group (including “no-group”).

7.2 Trust in resources

The basic notions that trust is a binary property – either the entitiy is trusted or it is not – must be
examined carefully in the grid context. As grid systems scale in the number of organizations, it
becomes harder to validate the level of trust that users should ascribe to resources. With a few
organizations, trust is relatively simple: an agreement is made between the career system
administrators at the different organizations as to the security policies that each entity will abide
by. The policies are specified in writing and the agreements are legally binding contracts. Each
new organization that joins the grid must agree to and abide by these security policies.

In a peer-to-peer system where each peer could potentially be in its own administrative domain,
such an approach to acquiring trust is a high hurdle to pass. The number of organizations could
well be in the thousands or tens of thousands. Furthermore, detecting breaches of the contract
(such as malicious users) and enforcing the terms of the contract is unrealistic.

In addition to community-based trust (discussed above), the system should be able to assign
different levels of trust to different resources based on the characteristics of the user and
resource. Using a distributed computing example, the system may have a high degree of trust in
professionally maintained server-class machines running in the same organization as the user; a
medium level of trust in machines running at a different organization; and very-little trust in
machines running on Internet-based grids. In each case, the system may provide different
services: extensive use of virtual machine-based technology, encryption and redundancy for the
Internet-based machines; data encryption and validation for machines at different organizations;
and no special considerations for server machines running in the same organization.

6.d Trust based on resource characteristics

6.d.1 Ability to run application in protected virtual environment (maintain resource integrity)

6.d.2 Ability to provide data integrity and confidentiality (encryption and data validation)

6.d.3 Ability to provide code integrity and confidentiality (using encryption, virtual
environments and redundancy)

7.3 Trust in Data

An issue that is particularly important for peer-to-peer file systems is the issue of copyright
identification: the data that is shared between the peers is in some cases copyrighted information
and must be detected and copyright policies enforced. Digital rights management (DRM) is one
mechanism to control the rights to data, but in some cases, active monitoring and identification of
copyrighted material is needed. For example, corporations may have a policy to scan and limit
the documents attached to email sent outside of the corporation or internet-based peer-to-peer
systems may decide not to allow sharing of commercial copyrighted music or videos.

GWD-Informational 11/19/2004

 30

6.e Support for DRM systems to protect data

6.f Support for active monitoring and identification of copyrighted material

GWD-Informational 11/19/2004

 31

8. Resilience to Variability in Resource Availability

Resources in a peer-to-peer context differ dramatically from server-class resources in terms of
their availability – that is to say, desktop resources fail more often and with longer durations than
their server counterparts. Part of the explanation is that server-class resources are typically
“higher grade” equipment with hardware redundancy built in to avoid downtime. In addition,
server-class resources typically have professional administrators who monitor the resources to
ensure high availability. Peer-to-peer resources, on the other hand, are composed of lower-end
desktop PC’s and laptops and are often not professionally managed or updated. And where
managed, there may be policies that actually reduce availability: some corporations require
desktop pc’s to be turned off at night to save electricity and limit security risks.

In addition to simple hardware failures, resources may be unavailable for other reasons: the
resource under the control of the desktop user may not wish to provide service or wish to provide
a reduced level of service for a period of time. To illustrate this, consider two applications:
instant messaging and distributed computing. For the first application, the resource (the user)
may be present but in a “busy” state and not accepting incoming messages. In the second
application, a resource may offer a reduced level of service during normal business hours.

P2P applications deal with these issues using a variety of mechanism including statistical
mechanics (law of large numbers), redundancy and validation, and active feedback and
optimization.

8.1 Offline Resource

The server-grid environment assumes that resources are online a majority of the time and that
failures and shutdowns are done in controlled circumstances and are performed relatively
infrequently. In a peer-to-peer setting, offline resources will be quite common as desktop
machines are turned off, laptops put to sleep, and other devices become disconnected from the
network. In [7], the authors examined machine availability of roughly 51,000 desktop machines
and found a 5% daily variation and 10% weekly variation; that is, within the span of a day (or
week), 5% (or 10%) of the machines could change their availability status. Entropia [10] found a
similar variability, 4% of jobs failed due to machine reboots.

As systems scale up network connectivity also reduces availability. For example, as laptop
usage in corporate environments increases, the grid systems must intelligently deal with network
disconnections. Some systems deal with network disconnections in the same way as machine
shutdowns, but the semantics are quite different. For PC Grids, disconnected machines can still
perform significant work and relay the results when reconnected. Hence, it is useful to distinguish
between machine failures and network failures (although it may be difficult to do so).

It is also useful to differentiate between a network failure that affects a single machine and
network failures that affect a large number of resources. The latter case is exemplified by the
failure of a wide-area router or switch cutting off connectivity to entire subnet or domain. In this
case, connectivity among the resources in the domain is still functioning but connectivity across
domains is not. This has been the basis of intelligent web caching and replication strategies.

7.a Support resource unavailability

7.a.1 Resources are turned off or rebooted (soft)

GWD-Informational 11/19/2004

 32

7.a.2
Resource crash (hard)

7.a.3 Resource disconnected

7.a.4 Resource present, but not accepting desired level of service,

8.2 Byzantine Failures (including malicious users)

Resources may be inaccessible due to malicious users. A common example of this are denial of
service attacks that render services inaccessible. This is a difficult area and very related to
security.

7.b Detection and resilience to DoS attacks

8.3 System Corruption or Failure

The third cause of unavailability of resources is that the grid system itself is unavailable or
corrupted. Included in this is the case where metadata regarding the resources (file or service)
becomes corrupted. In some cases, this is done purposely by individuals and groups for DoS.

7.c System Corruption and Failures

7.c.1 Data integrity checks for metadata

7.c.2 No single point of failure (eg. Resource discovery)

GWD-Informational 11/19/2004

 33

9. Location Awareness

Location Awareness is the capability to leverage proximity, either absolute, relative or contextual,
from within the application. There are a variety of reasons why location information could be
important for the application, from providing location-based services to system-level
optimizations. The former is an important capability in pervasive, ubiquitous computing systems.
In addition, mobile phones have recently been required to provide geographic location information
for emergency 911 calls, and mobile systems providers are already leveraging this capability to
provide prototype location-based services to their users. Examples of location-aware system
optimizations are also abundant: consider the peer-to-peer content deliver network described in
the use cases above. In this application, large files are retrieved from peers that are located
“close-by” in terms of network distance. Grid systems built over commodity networks with
applications that use large files must also address this problem.

We have identified three different types of “location” that can be leveraged by applications.
Absolute location defines the location of a peer or resource in absolute terms, perhaps latitude
and longitude, or with an appropriate network location identifier. Relative location provides
distance information between two peers or resources. While it is derivable from the absolute
location, it may in fact be easier to provide than absolute location and just as effective for some
applications. Contextual location is somewhat less clear. Consider the file sharing application
use case described above. If a group is created that is defined as “relatives of mine”, then the
peers in the group are all related to me. This is an example of contextual location. While the
members may in fact be geographically dispersed and in different networks, the membership in
the group has some location-like properties.

8.a Absolute Location

8.a.1 Given a peer, what is its geographic location?

8.a.2 Given a pair of peers, what is their geographic distance?

8.b Network Location

8.b.1 Given a peer, what is its network location?

8.b.2 Given a pair of peers, what is their network distance?

8.c Contextual Location

8.c.1 Given a peer, what is its contextual location?

8.c.2 Given a pair of peers, what is their distance?

8.d Support lLocation-based Queries

8.c.1 Find all resources within specified distance.

GWD-Informational 11/19/2004

 34

10. Group Support

Groups are an essential mechanism to collect and aggregate a set of peer resources or users
with common characteristics together. The common characteristics may relate to shared
interests of users or specific system configuration of machines. A group must have an identity
and must be able to be created and destroyed. Peer resources must be able to discover the
groups once created and a mechanism to join a group must be provided.

9.a A user or resource should be able to create new group

9.a.2 If desired, new groups should be discoverable

9.a.3 Identity of a group is unique

What about deleting a group?

9.b A user or resource should be able to join an existing group

9.b.1 Joining a group may require explicit permission from owner, or implict approval
through access control mechanisms

9.b.2 A member of a group should be able to query for the group membership

9.b.c A member of a group may/should be able to vote on group decisions (if appropriate)

9.c Misc

9.c.1 Delegation of ownership to others

9.c.2 No orphaned group should exist (an orphaned group is one that has no owner)

9.c.3 Support network partitioning

GWD-Informational 11/19/2004

 35

11. Conclusions

This document attempts to provide additional requirements for developing the Open Grid
Services Architecture that relate to “peer-to-peer” technology. We have provided explanatory use
cases for why peer-to-peer architectures should be considered as OGSA is developed and have
provided a number of specific requirements that support such architectures and applications. The
requirements are grouped into six areas:

- scalability
- connectivity
- discovery
- security
- resource availability
- location awareness
- group support

These requirements were developed through the contributions of many people attending the
OGSAP2P research group meetings at the Global Grid Forum and the associated group
teleconferences.

GWD-Informational 11/19/2004

 36

Security Considerations

This is a REQUIRED section.

Author Information

The primary authors for this document included:

 Karan Bhatia
 San Diego Supercomputer Center
 UCSD
 karan@sdsc.edu

 Per Brand
 SICS
 perbrand@sics.se

 Sergio Mendiola
 Oracle Corporation
 Sergio.mendiola@oracle.com

 Alex Mallet
 Microsoft Corporation
 amallet@winse.microsoft.com

 Karlo Berket
 Lawrence Berkeley National Laboratory
 kberket@lbl.gov

Glossary

Recommended by not required.

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

GWD-Informational 11/19/2004

 37

Full Copyright Notice

Copyright (C) Global Grid Forum (date). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the GGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
GGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE."

GWD-Informational 11/19/2004

 38

References

1. Condor: High Throughput Computing, 2003, The Condor Team.
2. DataSynapse Home Page, 2003, DataSynapse.
3. The Napster Home Page, 2003, Napster.
4. United Devices Home Page, 2003, United Devices.
5. Barkai, D., Peer-To-Peer Computing: Technologies for Sharing and Collaborating on the

Net. 2001: Intel Press.
6. Bhagwan, R., S. Savage, and G. Voelker. Understanding Availability. in 2nd International

Workshop on Peer-to-Peer Systems. February 20-21 2003. Berkeley, CA.
7. Bolosky, W., J. Douceur, D. Ely, and M. Theimer. Feasibility of a Serverless Distributed

File System Deployed on an Existing Set of Desktop PCs. in Proceedings of the
international conference on Measurement and modeling of computer systems2000.

8. Casanova, H., Distributed computing research issues in Grid computing. Sigact News,
2002. 33(3): p. 50-70.

9. Cass, S., Can't we all just get along? IEEE Spectrum, 2003. 40(1): p. 47-50.
10. Chien, A., B. Calder, S. Elbert, and K. Bhatia, Entropia: Architecture and Performance of

an Enterprise Desktop Grid System. Journal of Parallel Distributed Computing, May 2003
2003. 63(5): p. 597-610.

11. Foster, I. and C. Kesselman. Globus: a metacomputing infrastructure toolkit. in Sage
Periodicals Press. International Journal of Supercomputer Applications, vol.11, no.2,
Summer 1997, pp.115-28. USA.

12. Ledlie, J., J. Shneidman, M. Seltzer, and J. Huth. Scooped, Again. in IPTPS. February
2003. Berkeley, CA.

13. Oram, A., Peer-to-peer : harnessing the benefits of a disruptive technology. 1st ed. 2001,
Beijing ; Sebastopol, CA: O'Reilly. xv, 432.

14. Sullivan, W.T., D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, and D. Anderson. A new
major SETI project based on Project Serendip data and 100,000 personal computers. in
the Fifth Intl. Conf. on Bioastronomy. 1997 1997. Bologna, Italy.

15. Talia, D. and P. Trunfio, Towards a Synergy Between P2P and Grids. IEEE Internet
Computing, 2003 2003. 7(4): p. 94-96.

16. Tuecke, S., K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T.
Sandholm, P. Vanderbilt, and D. Snelling, Open Grid Services Infrastructure (OGSI)
Version 1.0. June 27, 2003 2003, Global Grid Forum.

