
GWD-R-P
DRMAA-WG
drmaa-wg@ogf.org

Peter Tröger, Hasso-Plattner-Institute
(Corresponding Author)

Roger Brobst, Cadence Design Systems
Daniel Gruber, Univa

Mariusz Mamoński, PSNC
Daniel Templeton, Cloudera

August 2011

Distributed Resource Management Application API Version 2
(DRMAA)

Status of This Document

Group Working Draft - Proposed Recommendation (GWD-R-P)

Obsoletes

This document obsoletes GFD-R.022 [8], GFD-R-P.130 [10], and GWD-R.133 [9].

Document Change History

Date Notes
August 9, 2011 Submission to OGF Editor

Copyright Notice

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved. Distribution is unlimited.

Trademark

All company, product or service names referenced in this document are used for identification purposes only
and may be trademarks of their respective owners.

Abstract

This document describes the Distributed Resource Management Application API Version 2 (DRMAA). It
defines a generalized API to Distributed Resource Management (DRM) systems in order to facilitate the
development of portable application programs and high-level libraries.

The intended audience for this specification are DRMAA language binding designers, DRM system vendors,
high-level API designers and meta-scheduler architects. End users are expected to rely on product-specific
documentation for the DRMAA API implementation in their particular programming language.

drmaa-wg@ogf.org 1

mailto:drmaa-wg@ogf.org
http://www.drmaa.org/
http://www.drmaa.org/
mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

Notational Conventions

In this document, IDL language elements and definitions are represented in a fixed-width font.

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described
in RFC 2119 [2].

Memory quantities are expressed in kilobyte (KB). 1 kilobyte equals 1024 bytes.

Parts of this document are only normative for DRMAA language binding specifications. These sections are
graphically marked as shaded box.

.

drmaa-wg@ogf.org 2

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Slots and Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Language Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Job Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Common Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Enumerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1 OperatingSystem enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 CpuArchitecture enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 ResourceLimitType enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 JobTemplatePlaceholder enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5 DrmaaCapability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Extensible Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1 QueueInfo structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Version structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 MachineInfo structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 SlotInfo structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5 JobInfo structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.6 ReservationInfo structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.7 JobTemplate structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.8 ReservationTemplate structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.9 DrmaaReflective Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Common Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 The DRMAA Session Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1 SessionManager Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8 Working with Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.1 The DRMAA State Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.2 JobSession Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.3 DrmaaCallback Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.4 Job Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.5 JobArray Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.6 The DRMAA INDEX VAR environment variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

9 Working with Advance Reservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.1 ReservationSession Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.2 Reservation Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

10 Monitoring the DRM System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.1 MonitoringSession Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

11 Complete DRMAA IDL Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

12 Security Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

13 Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

14 Intellectual Property Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

drmaa-wg@ogf.org 3

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

15 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

16 Full Copyright Notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

17 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

drmaa-wg@ogf.org 4

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

1 Introduction

The Distributed Resource Management Application API Version 2 (DRMAA) specification defines an inter-
face for tightly coupled, but still portable access by abstracting the fundamental functions available in the
majority of DRM systems. The scope is limited to job submission, job control, reservation management, and
retrieval of job and machine monitoring information.

This document acts as root specification for the abstract API concepts and the behavioral rules of a DRMAA-
compliant implementation. The programming language representation of the API is defined by a separate
language binding specification.

There are other relevant OGF standards in the area of job submission and monitoring. An in-depth compar-
ison and positioning of the obsoleted first version of the DRMAA [9] specification was provided by another
publication [11]. This document was created in close collaboration with the OGF SAGA and the OGF OCCI
working group.

First-time readers are recommended to complete reading this section. After that, they should jump to Section
7 for getting an overview of the supported functionality in DRMAA. Section 11 can be always consulted in
parallel for a global overview on the API layout.

1.1 Basic concepts

The DRMAA specification is based on the following stakeholders:

• Distributed resource management system / DRM system / DRMS : Any system that supports the con-
cept of distributing computational tasks on execution resources through the help of a central scheduling
entity. Examples are multi-processor systems controlled by a operating system scheduler, cluster sys-
tems with multiple machines controlled by a central scheduler software, grid systems, or cloud systems
with a job concept.

• (DRMAA) implementation / (DRMAA) library : The implementation of a DRMAA language binding
specification, with the functional behavior as described in this document. The resulting artifact is
expected to target one DRM system.

• (DRMAA-based) application: Software that utilizes the DRMAA implementation for gaining access to
one or multiple DRM systems in a standardized way.

• Submission host : A resource in the DRM system that runs the DRMAA-based application. A submis-
sion host MAY also be able to act as execution host.

• Execution host : A resource in the DRM system that can run a submitted job.

• Job: A computational activity submitted by the DRMAA-based application to a DRM system, with
the help of the DRMAA implementation. A job is expected to run as one or many operating system
processes on one or many execution hosts.

Table 1 defines the conceptual mapping of DRMAA to the GLUE 2.0 Information model [1]. Since the
DRMAA API design is derived from existing DRM system functionality and terminology, not all GLUE
concepts are applicable here, such as the expression of ID’s as URI’s, the SI metric model, the representation
of date information, or the endpoint concept.

drmaa-wg@ogf.org 5

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

DRMAA Reference GLUE 2.0 Reference [1]
DRM system Section 1.1 Manager Section 5.9
Execution host Section 1.1 ExecutionEnvironment + ComputingManager Section 6.4 / 6.6
Socket Section 5.3.3 Physical CPU Section 6
Core Section 5.3.4 Logical CPU Section 6
Job Section 1.1 ComputingActivity Section 6.9
Job category Section 1.4 ApplicationEnvironment Section 6.7
UNSET value Section 1.3 Placeholder values for unknown data Appendix A

Table 1: Mapping of DRMAA concepts to GLUE 2.0

1.2 Slots and Queues

Similar to GLUE, DRMAA supports the notion of slots and queues as resources of a DRM system. A
DRMAA application can request them in advance reservation and job submission. However, slots and
queues SHALL be opaque concepts from the viewpoint of a DRMAA implementation, meaning that the
requirements given by the application are just passed through to the DRM system. This is reasoned by the
large variation in interpreting that concepts in the different DRM systems, which makes it impossible to
define a common understanding on the level of the DRMAA API.

1.3 Language Bindings

The interface semantics are described with the OMG Interface Definition Language (IDL) [5] syntax. Based
on this language-agnostic specification, language binding standards have to be designed that map the abstract
concepts into a library interface for a particular programming language (e.g. C, Java, Python). While this
document has the responsibility to ensure consistent API semantics for all possible DRMAA implementations,
the language binding has the responsibility to ensure source-code portability for DRMAA applications on
different DRM systems.

An effort has been made to choose an API layout that is not unique to a particular language. However, in
some cases, various languages disagree over some points. In those cases, the most meritous approach was
taken, irrespective of language.

A language binding specification derived from this document MUST define a mapping between the IDL
constructs and the constructs of its targeted programming language. The focus MUST be on source code
portability for the DRMAA-based application in the particular language.

A language binding SHOULD NOT rely completely on the OMG IDL language mapping standards available
for many programming languages, since they have a significant overhead of CORBA-related mapping rules
that are not relevant here. The language binding MUST use its initially defined type system mapping in a
consistent manner for the complete API layout.

Due to the usage of IDL, all method groups for a particular purpose (e.g. job control) are described in terms
of interfaces, and not classes. Language bindings MAY map the DRMAA IDL interfaces to classes.

It may be the case that IDL constructs do not map directly to any language construct. In this case it MUST
be ensured that the chosen mapping retains the intended semantic of the DRMAA interface definition.

Access to scalar attributes (string, boolean, long) MUST operate in a pass-by-value mode. For non-

drmaa-wg@ogf.org 6

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

scalar attributes, the language binding MUST specify a consistent access strategy for all these attributes,
for example pass-by-value or pass-by-reference.

This specification tries to consider the possibility of a Remote Procedure Call (RPC) scenario in a DRMAA-
conformant language binding. It SHOULD therefore be ensured that the programming language type for an
IDL struct definition supports serialization and the comparison of instances. These capabilities should be
accomplished through whatever mechanism is most natural for the programming language.

A language binding MUST define a way to declare an invalid value (UNSET). In case, a definition per data
type needs to be provided. Evaluating an UNSET boolean value MUST result in a negative result, e.g. for
JobTemplate::emailOnStarted. Invalid strings MAY be modelled according to the GLUE 2.0 scheme [1],
were an UNSET string contains the value “UNDEFINEDVALUE”. Invalid integers MAY be also modelled
according to GLUE 2.0 scheme, were an UNSET integer is expressed as “all nines”.

1.4 Job Categories

DRMAA facilitates writing DRM-enabled applications even though the deployment properties, in particular
the configuration of the DRMS, cannot be known in advance. This is realized by a set of standardized
attributes that can be specified for job submission or advance reservation.

One of these attributes is the job category, which allows to give an indication about the nature of the job at
execution time. Examples are parallel MPI jobs, OpenMP jobs, jobs targeting specific accelerator hardware,
or jobs demanding managed runtime environments (e.g. Java).

Job categories typically map to site-specific reservation or submission options. Each category expresses a
particular type of job execution that demands site-specific configuration such as path settings, environment
variables, or application starters. This mapping to site-specific conditions SHOULD take place at submission
time of the job or advance reservation.

A non-normative recommendation of category names is maintained at:

http://www.drmaa.org/jobcategories/

Implementations SHOULD use these recommended names. In case the name is not taken from this list, it
should be self-explanatory for the user to make her understand the implications on job execution.

Implementations MAY provide a library configuration facility, which allows a site administrator to link job
category names with specific product- and site-specific configuration options.

The order of precedence between the job category and other attributes is implementation-specific. It is
RECOMMENDED to overrule explicit job / reservation settings with the implicit settings resulting from a
conflicting job category.

For bulk job submissions, the category is expected to be valid for each of the jobs created.

1.5 Multithreading

High-level APIs such as SAGA [4] are expected to utilize DRMAA for their own asynchronous operation,
based on the assumption that re-entrancy is supported by the DRMAA implementation. For this reason,

drmaa-wg@ogf.org 7

http://www.drmaa.org/jobcategories/
mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

implementations SHOULD ensure the proper functioning of the library in case of re-entrant library calls with-
out any explicit synchronization among the application threads. DRMAA implementers should document
their level of thread safety.

2 Namespace

The DRMAA interfaces and structures are encapsulated by a naming scope, to avoid conflicts with other
APIs used in the same application.

module DRMAA2 {

A language binding MUST map the IDL module encapsulation to an according package or namespace
concept. It MAY change the module name according to programming language conventions.

3 Common Type Definitions

The abstract DRMAA specification defines some custom types to express special value semantics not available
in original IDL:

typedef sequence <string > OrderedStringList;

typedef sequence <string > StringList;

typedef sequence <Job > JobList;

typedef sequence <QueueInfo > QueueInfoList;

typedef sequence <MachineInfo > MachineInfoList;

typedef sequence <SlotInfo > OrderedSlotInfoList;

typedef sequence <Reservation > ReservationList;

typedef sequence < sequence <string ,2> > Dictionary;

typedef string AbsoluteTime;

typedef long long TimeAmount;

native ZERO_TIME;

native INFINITE_TIME;

native NOW;

OrderedStringList: An unbounded list of strings, which supports element insertion, element deletion, and
iteration over elements while keeping an element order.

StringList: An unbounded list of strings, without any demand on element order.

JobList: An unbounded list of Job instances, without any demand on element order.

QueueInfoList: An unbounded list of QueueInfo instances, without any demand on element order.

MachineInfoList: An unbounded list of MachineInfo instances, without any demand on element order.

OrderedSlotInfoList: An unbounded list of SlotInfo instances, which supports element insertion, element
deletion, and iteration over elements while keeping an element order.

ReservationList: An unbounded list of Reservation instances, without any demand on element order.

Dictionary: An unbounded dictionary type for storing key-value pairs, without any demand on element
order.

drmaa-wg@ogf.org 8

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

AbsoluteTime: Expression of a point in time, with a resolution at least to seconds.

TimeAmount: Expression of an amount of time, with a resolution at least to seconds.

ZERO TIME: A constant value of type TimeAmount that expresses a zero amount of time.

INFINITE TIME: A constant value of type TimeAmount that expresses an infinite amount of time.

NOW: A constant value of type AbsoluteTime that represents the point in time at which it is evaluated
by some function.

A language binding MUST replace these type definitions with semantically equal reference or value types
in the according language. This MAY include the creation of new complex language types for one or more
of the above concepts. The language binding MUST define a mechanism for obtaining the RFC822 string
representation from a given AbsoluteTime or TimeAmount instance.

4 Enumerations

Some methods and attributes in DRMAA expect enumeration constants as input. The specified enumerations
SHOULD NOT be extended by an implementation or language binding.

Language bindings SHOULD define numerical values for all enumeration members.

4.1 OperatingSystem enumeration

DRMAA supports the identification or demanding of an operating system installation on execution hosts.
The enumeration defines a set of standardized identifiers for operating system types. The list is a shortened
version of the according CIM Schema [7]. It includes only operating systems that are supported by the
majority of DRM systems available at the time of writing:

enum OperatingSystem {

AIX , BSD , LINUX , HPUX , IRIX , MACOS , SUNOS , TRUE64 , UNIXWARE , WIN ,

WINNT , OTHER_OS };

AIX: AIX Unix by IBM.

BSD: All operating system distributions based on the BSD kernel.

LINUX: All operating system distributions based on the Linux kernel.

HPUX: HP-UX Unix by Hewlett-Packard.

IRIX: The IRIX operating system by SGI.

MACOS: The MAC OS X operating system by Apple.

SUNOS: SunOS or Solaris operating system by Sun / Oracle.

TRUE64: True64 Unix by Hewlett-Packard, or DEC Digital Unix, or DEC OSF/1 AXP.

UNIXWARE: UnixWare system by SCO group.

WIN: Windows 95, Windows 98, Windows ME.

drmaa-wg@ogf.org 9

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

WINNT: Microsoft Windows operating systems based on the NT kernel

OTHER OS: An operating system type not specified in this list.

Implementations SHOULD NOT add new operating system identifiers to this enumeration, even if they are
supported by the underlying DRM system.

The operating system information is only useful in conjunction with version information (see Section 5.2),
which reflects the reporting approach taken in most DRM systems. Examples:

• The Apple MacOS X operating system commonly denoted as “Snow Leopard” would be reported as
“MACOS” with the version structure [“10”,“6”]

• The Microsoft Windows 7 operating system would be reported as “WINNT” with the version infor-
mation [“6”,“1”], which is the internal version number reported by the Windows API.

• All Linux distributions would be reported as operating system type “LINUX” with the major revision
of the kernel, such as [“2”,“6”].

• The Solaris operating system is reported as “SUNOS”, together with the internal version number, e.g.
[“5”,“10”] for Solaris 10.

The DRMAA OperatingSystem enumeration can be mapped to other high-level specifications. Table 2 gives
a non-normative set of examples.

DRMAA OperatingSystem JSDL jsdl:OperatingSystemTypeEnumeration GLUE v2.0
HPUX HPUX
LINUX LINUX OSFamily t:linux
IRIX IRIX
TRUE64 Tru64 UNIX, OSF
MACOS MACOS OSFamily t:macosx
SUNOS SunOS, SOLARIS OSFamily t:solaris
WIN WIN95, WIN98, Windows R Me OSFamily t:windows
WINNT WINNT, Windows 2000, Windows XP OSFamily t:windows
AIX AIX OSName t:aix
UNIXWARE SCO UnixWare, SCO OpenServer
BSD BSDUNIX, FreeBSD, NetBSD, OpenBSD

Table 2: Mapping example for the DRMAA OperatingSystem enumeration

4.2 CpuArchitecture enumeration

DRMAA supports identifying the processor instruction set architecture on execution hosts. The
CpuArchitecture enumeration is used as data type in job submission, advance reservation and system
monitoring. It defines a set of standardized identifiers for processor architecture families. The list is a short-
ened version of the according CIM Schema [7], It includes only processor families that are supported by the
majority of DRM systems available at the time of writing:

enum CpuArchitecture {

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,

SPARC , SPARC64 , OTHER_CPU };

drmaa-wg@ogf.org 10

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

ALPHA: The DEC Alpha / Alpha AXP processor architecture.

ARM: The ARM processor architecture.

CELL: The Cell processor architecture.

PARISC: The PA-RISC processor architecture.

X86: The IA-32 line of the X86 processor architecture family, with 32bit support only.

X64: The X86-64 line of the X86 processor architecture family, with 64bit support.

IA64: The Itanium processor architecture.

MIPS: The MIPS processor architecture.

PPC: The PowerPC processor architecture, all models with 32bit support only.

PPC64: The PowerPC processor architecture, all models with 64bit support.

SPARC: The SPARC processor architecture, all models with 32bit support only.

SPARC64: The SPARC processor architecture, all models with 64bit support.

OTHER CPU: A processor architecture not specified in this list.

The DRMAA CpuArchitecture enumeration can be mapped to other high-level APIs. Table 3 gives a
non-normative set of examples.

The reporting and job configuration for processor architectures SHOULD operate on a “as-is” base, if sup-
ported by the DRM system. This means that the reported architecture should reflect the current operation
mode of the processor with the running operating system. For example, X64 processors executing a 32-bit
operating system should be reported as X86 processor.

DRMAA CpuArchitecture JSDL jsdl:ProcessorArchitectureEnumeration GLUE v2.0
ALPHA other

ARM arm
CELL other

PARISC parisc
X86 x86 32 Platform t:i386
X64 x86 64 Platform t:amd64
IA64 ia64 Platform t:itanium
MIPS mips
PPC powerpc Platform t:powerpc

PPC64 powerpc Platform t:powerpc
SPARC sparc Platform t:sparc

SPARC64 sparc Platform t:sparc

Table 3: Mapping example for DRMAA CpuArchitecture enumeration

4.3 ResourceLimitType enumeration

Modern DRM systems expose resource constraint capabilities from the operating system also for jobs. The
ResourceLimitType enumeration represents the most common setrlimit parameters [6] supported in DRM

drmaa-wg@ogf.org 11

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

systems. In general, resource limitations aim at the level of jobs. If a job is instantiated as multiple processes,
the behavior is implementation-specific.

enum ResourceLimitType {

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };

CORE FILE SIZE: The maximum size of the core dump file created on fatal errors of the job, in kilobyte.
Setting this value to zero SHOULD disable the creation of core dump files on the execution host.

CPU TIME: The maximum time in seconds the job is allowed to perform computations. The value
SHOULD be interpreted as sum for all processes belonging to the job. This value MUST only include
time the job is spending in JobState::RUNNING (see Section 8.1).

DATA SEG SIZE: The maximum amount of memory the job can allocate on the heap e.g. for object
creation, in kilobyte.

FILE SIZE: The maximum file size the job can generate, in kilobyte.

OPEN FILES: The maximum number of file descriptors the job is allowed to have open at the same time.

STACK SIZE: The maximum amount of memory the job can allocate on the stack, e.g. for local variables,
in kilobyte.

VIRTUAL MEMORY: The maximum amount of memory the job is allowed to allocate, in kilobyte.

WALLCLOCK TIME: The maximum wall clock time in seconds that all processes of a job are allowed
to exist. The time amount MUST include the time spent in RUNNING state, and MAY also include
the time spent in SUSPENDED state (see Section 8.1). The limit value MAY also be used for job
scheduling decisions by the DRM system or the implementation.

4.4 JobTemplatePlaceholder enumeration

The JobTemplatePlaceholder enumeration defines constant macros to be used in string attributes of a
JobTemplate instance (see Section 5.7).

enum JobTemplatePlaceholder {

HOME_DIRECTORY ,WORKING_DIRECTORY ,PARAMETRIC_INDEX };

A HOME_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute value.
It denotes the remaining portion as a directory / file path resolved relative to the job users home directory
on the execution host.

A WORKING_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute
value. It denotes the remaining portion as a directory / file path resolved relative to the jobs working
directory on the execution host.

The PARAMETRIC_INDEX placeholder SHOULD be usable at any position within an attribute value that sup-
ports place holders. It SHALL be substituted by the parametric job index when JobSession::runBulkJobs

is called (see Section 8.2.7). If the job template is used for a JobSession:runJob call, PARAMETRIC_INDEX
SHOULD be substituted with a constant implementation-specific value.

drmaa-wg@ogf.org 12

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

4.5 DrmaaCapability

The DrmaaCapability enumeration expresses DRMAA features and data attributes that may or may not
be supported by a particular implementation. Applications are expected to check the availability of optional
capabilities through the SessionManager::supports method (see Section 7.1.5).

enum DrmaaCapability {

ADVANCE_RESERVATION , RESERVE_SLOTS , CALLBACK , BULK_JOBS_MAXPARALLEL ,

JT_EMAIL , JT_STAGING , JT_DEADLINE , JT_MAXSLOTS , JT_ACCOUNTINGID ,

RT_STARTNOW , RT_DURATION , RT_MACHINEOS , RT_MACHINEARCH

};

ADVANCE RESERVATION: Indicates that the implementation supports advance reservation through
the interfaces (ReservationSession and Reservation).

RESERVE SLOTS: Indicates that the advance reservation functionality is targeting slots. If this capa-
bility is not given, the advance reservation is targeting whole machines as granularity level.

CALLBACK: Indicates that the implementation supports event notification through a DrmaaCallback

interface in the application.

BULK JOBS MAXPARALLEL: Indicates that the maxParallel parameter in the
JobSession::runBulkJobs method is considered and supported by the implementation.

JT EMAIL: Indicates that the optional email, emailOnStarted, and emailOnTerminated attributes in
job templates are supported by the implementation.

JT STAGING: Indicates that the optional JobTemplate::stageInFiles and
JobTemplate::stageOutFiles attributes are supported by the implementation.

JT DEADLINE: Indicates that the optional JobTemplate::deadlineTime attribute is supported by the
implementation.

JT MAXSLOTS: Indicates that the optional JobTemplate::maxSlots attribute is supported by the
implementation.

JT ACCOUNTINGID: Indicates that the optional JobTemplate::accountingId attribute is supported
by the implementation.

RT STARTNOW: Indicates that the ReservationTemplate::startTime attribute accepts the NOW value.

RT DURATION: Indicates that the optional ReservationTemplate::duration attribute is supported
by the implementation.

RT MACHINEOS: Indicates that the optional ReservationTemplate::machineOS attribute is sup-
ported by the implementation.

RT MACHINEARCH: Indicates that the optional ReservationTemplate::machineArch attribute is
supported by the implementation.

5 Extensible Data Structures

DRMAA defines a set of data structures commonly used in the API to express information for and from
the DRM system. A DRMAA implementation MAY extend these structures with implementation-specific

drmaa-wg@ogf.org 13

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

attributes. Behavioral aspects of such extended attributes are out of scope for DRMAA. Implementations
MAY even ignore the attribute values in some situations.

A language binding MUST define a consistent mechanism to realize implementation-specific structure ex-
tension, without breaking the portability of DRMAA-based applications that rely on the original version of
the structure. Object oriented languages MAY use inheritance mechanisms for this purpose. Instances of
extended structures SHALL still be treated in a “call-by-value” fashion.

Implementations SHALL only extend data structures in the way specified by the language binding. The
introspection of supported implementation-specific attributes is offered by the DrmaaReflective interface
(see Section 5.9). Implementations SHOULD also support native introspection functionalities if defined by
the language binding.

Language bindings MAY define how the native introspection capabilities of a language or it’s runtime envi-
ronment can be used. These mechanisms MUST work in parallel to the DrmaaReflective interface.

5.1 QueueInfo structure

DRMAA defines queues as opaque concept for an implementation, which allows different mappings to DRMS
concepts (see Section 1.2). The DRMAA QueueInfo struct therefore contains only the name of the queue,
but can be extended by the implementation as described above. All such structure instances are read-only.

struct QueueInfo {

string name;

};

5.1.1 name

This attribute contains the name of the queue as reported by the DRM system. The format of the queue
name is implementation-specific. The naming scheme SHOULD be consistent for all instances.

5.2 Version structure

The Version structure denotes versioning information for an operating system, DRM system, or DRMAA
implementation.

struct Version {

string major;

string minor;

};

Both the major and the minor part are expressed as strings, in order to allow extensions with character
combinations such as “rev”. Original version strings containing a dot, e.g. Linux “2.6”, SHOULD be
interpreted as having the major part before the dot, and the minor part after the dot. The dot character
SHOULD NOT be added to the Version attributes.

Implementations SHOULD NOT extend this structure with implementation-specific attributes.

drmaa-wg@ogf.org 14

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

5.3 MachineInfo structure

The MachineInfo structure describes the properties of a particular execution host in the DRM system. It
contains read-only information. An implementation or its DRM system MAY restrict jobs in their resource
utilization even below the limits described in the MachineInfo structure. The limits given here MAY be
imposed by the hardware configuration, or MAY be be imposed by DRM system policies.

struct MachineInfo {

string name;

boolean available;

long sockets;

long coresPerSocket;

long threadsPerCore;

double load;

long physMemory;

long virtMemory;

OperatingSystem machineOS;

Version machineOSVersion;

CpuArchitecture machineArch;

};

5.3.1 name

This attribute describes the name of the machine as reported by the DRM system. The format of the
machine name is implementation-specific, but MAY be a DNS host name. The naming scheme SHOULD be
consistent among all machine struct instances.

5.3.2 available

This attribute expresses the usability of the machine for job execution at the time of querying. The value of
this attribute SHALL NOT influence the validity of job templates referencing MachineInfo instances. DRM
systems and their DRMAA implementation MAY allow to submit jobs intended for machines unavailable at
this time.

5.3.3 sockets

This attribute describes the number of processor sockets (CPUs) usable for jobs on the machine. The at-
tribute value MUST be greater than 0. In the case where the correct value is unknown to the implementation,
the value MUST be set to 1.

5.3.4 coresPerSocket

This attribute describes the number of cores per socket usable for jobs on the machine. The attribute value
MUST be greater than 0. In case where the correct value is unknown to the implementation, the value
MUST be set to 1.

drmaa-wg@ogf.org 15

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

5.3.5 threadsPerCore

This attribute describes the number of threads that can be executed in parallel by a job’s process on one core
in the machine. The attribute value MUST be greater than 0. In case where the correct value is unknown
to the implementation, the value MUST be set to 1.

5.3.6 load

This attributes describes the 1-minute average load on the given machine. Implementations MAY use the
same mechanism as the Unix uptime command. The value has only informative character, and should not
be utilized by end user applications for job scheduling purposes. An implementation MAY provide delayed
or averaged data here, if necessary due to implementation issues. The implementation strategy on non-Unix
systems is undefined.

5.3.7 physMemory

This attribute describes the amount of physical memory in kilobyte installed in this machine.

5.3.8 virtMemory

This attribute describes the amount of virtual memory in kilobyte available for a job executing on this
machine. The virtual memory SHOULD be defined as the sum of physical memory installed, plus the
configured swap space for the operating system. The value is expected to be used as indicator whether or not
an application is able to get its memory allocation needs fulfilled on a particular machine. Implementations
SHOULD derive this value directly from operating system information, without further consideration of
additional memory allocation restrictions, such as address space ranges or already running processes.

5.3.9 machineOS

This attribute describes the operating system installed on the machine, with values as specified in Section
4.1.

5.3.10 machineOSVersion

This attribute describes the operating system version on the machine, with values as specified in Section 4.1.

5.3.11 machineArch

This attribute describes the instruction set architecture of the machine, with values as specified in Section
4.2.

5.4 SlotInfo structure

DRMAA defines slots as opaque concept for an implementation, which allows different mappings to DRMS
concepts (see Section 1.2). The DRMAA SlotInfo structure describes the amount of reserved slots on a
machine. Implementations SHALL NOT extend this structure with implementation-specific attributes. All
such structure instances are read-only.

struct SlotInfo {

string machineName;

drmaa-wg@ogf.org 16

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

string slots;

};

5.4.1 machineName

The name of the machine. Strings returned here SHOULD be equal to the MachineInfo::name attribute in
the matching MachineInfo instance.

5.4.2 slots

The number of slots reserved on the given machine. Depending on the intepretation of slots in the imple-
mentation, this value MAY be always one.

5.5 JobInfo structure

The JobInfo structure provides detailed information about the characteristics of a (bulk) job.

struct JobInfo {

string jobId;

long exitStatus;

string terminatingSignal;

string annotation;

JobState jobState;

any jobSubState;

OrderedSlotInfoList allocatedMachines;

string submissionMachine;

string jobOwner;

long slots;

string queueName;

TimeAmount wallclockTime;

long cpuTime;

AbsoluteTime submissionTime;

AbsoluteTime dispatchTime;

AbsoluteTime finishTime;

};

It is used in two occasions - first for the representation of information about a single job, and second as filter
expression when retrieving a list of jobs.

In both usage scenarios, the structure information has to be understood as snapshot of the live DRM system.
Multiple values being set in one structure instance should be interpreted as “occurring at the same time”.
In real implementations, some granularity limits must be assumed - for example, the wallclockTime and
the cpuTime attributes might hold values that were measured with a very small delay one after each other.

In the filtering case, the value UNSET for an attribute MUST express wildcard semantics, meaning that this
part of JobInfo is ignored for filtering.

DRMAA makes no assumption on the JobInfo availability for jobs in a a “Terminated” state (see Section
8.1). Implementations SHOULD allow to fetch information about such jobs, complete or incomplete, for

drmaa-wg@ogf.org 17

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

a reasonable amount of time. For such terminated jobs, implementations MAY also decide to return only
partially filled JobInfo instances.

For additional DRMS-specific information, the JobInfo structure MAY be extended by the DRMAA imple-
mentation (see Section 5).

5.5.1 jobId

For monitoring: Reports the stringified job identifier assigned to the job by the DRM system.

For filtering: Returns the job with the chosen job identifier.

5.5.2 exitStatus

For monitoring: The process exit status of the job, as reported by the operating system on the execution host.
The value MAY be UNSET. If the job contains of multiple processes, the behavior is implementation-specific.

For filtering: Return the jobs with the given exitStatus value.

5.5.3 terminatingSignal

For monitoring: This attribute describes the UNIX signal that reasoned the end of the job. Implementations
should document the extent to which they can gather such information in the particular DRM system.

For filtering: Returns the jobs with the given terminatingSignal value.

5.5.4 annotation

For monitoring: Gives a human-readable annotation describing why the job is in its current state or sub-state.
Implementations MAY decide to offer such description only in specific cases, so it MAY also be UNSET.

For filtering: This attribute is ignored for filtering.

5.5.5 jobState

For monitoring: This attribute reports the jobs current state according to the DRMAA job state model (see
Section 8.1).

For filtering: Returns all jobs in the specified state. If the given state is emulated by the implementation
(see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining that this
filter can never match.

5.5.6 jobSubState

For monitoring: This attribute reports the current implementation-specific sub-state for this job (see Section
8.1).

For filtering: Returns all jobs in the specified sub-state. If the given sub-state is not supported by the
implementation, it MAY raise an InvalidArgumentException explaining that this filter can never match.

drmaa-wg@ogf.org 18

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

5.5.7 allocatedMachines

This attribute expresses a set of machines that is utilized for job execution. Each SlotInfo instance in the
attribute value describes the utilization of a particular execution host, and of a set of slots related to this
host.

Implementations MAY decide to give the ordering of machine names a particular meaning, for example
putting the master node of a parallel job at first position. This decision should be documented for the user.

For monitoring: The attribute lists the machines and the slot count per machine allocated for the job. The
slot count value MAY be UNSET. The machine name value MUST be set.

For filtering: Returns all jobs that fulfill the following condition: The job is executed on a superset of the
given list of machines, and got at least the given number of slots on the particular machine. The slots value
per machine MUST be allowed to have an UNSET value. In this case, only the machine condition SHALL be
checked.

5.5.8 submissionMachine

This attribute provides the name of the submission host for this job. The machine name SHOULD be equal
to the according MachineInfo::name attribute in monitoring data.

For monitoring: This attribute reports the machine from which this job was submitted.

For filtering: Returns the set of jobs that were submitted from the specified machine.

5.5.9 jobOwner

For monitoring: This attribute reports the job owner as recorded in the DRM system.

For filtering: Returns all jobs owned by the specified user.

5.5.10 slots

For monitoring: This attribute reports the number slots that were allocated for the job. The value SHOULD
be in between JobTemplate::minSlots and JobTemplate::maxSlots.

For filtering: Return all jobs with the specified number of reserved slots.

5.5.11 queueName

For monitoring: This attribute reports the name of the queue in which the job was queued or started (see
Section 1.2).

For filtering: Returns all jobs that were queued or started in the queue with the specified name.

5.5.12 wallclockTime

For monitoring: The accumulated wall clock time, with the semantics as defined in Section 4.3.

For filtering: Returns all jobs that have consumed at least the specified amount of wall clock time.

drmaa-wg@ogf.org 19

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

5.5.13 cpuTime

For monitoring: The accumulated CPU time, with the semantics as defined in Section 4.3.

For filtering: Returns all jobs that have consumed at least the specified amount of CPU time.

5.5.14 submissionTime

For monitoring: This attribute reports the time at which the job was submitted. Implementations SHOULD
use the submission time recorded by the DRM system, if available.

For filtering: Returns all jobs that were submitted at or after the specified submission time.

5.5.15 dispatchTime

For monitoring: The time the job first entered a “Started” state (see Section 8.1). On job restart or re-
scheduling, this value does not change.

For filtering: Returns all jobs that entered a “Started” state at or after the specified dispatch time.

5.5.16 finishTime

For monitoring: The time the job first entered a “Terminated” state (see Section 8.1).

For filtering: Returns all jobs that entered a “Terminated” state at or after the specified finish time.

5.6 ReservationInfo structure

The structure provides information about an existing advance reservation, as reported by the DRM system.

struct ReservationInfo {

string reservationId;

string reservationName;

AbsoluteTime reservedStartTime;

AbsoluteTime reservedEndTime;

StringList usersACL;

long reservedSlots;

OrderedSlotInfoList reservedMachines;

};

The structure is used for the expression of information about a single advance reservation. Information
provided in this structure SHOULD NOT change over the reservation lifetime. However, implementations
MAY reflect the altering of advance reservations outside of DRMAA sessions.

For additional DRMS-specific information, the ReservationInfo structure MAY be extended by the imple-
mentation (see Section 5).

5.6.1 reservationId

Returns the stringified identifier assigned to the advance reservation by the DRM system.

drmaa-wg@ogf.org 20

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

5.6.2 reservationName

This attribute describes the reservation name that was stored by the implementation or the DRM sys-
tem for the reservation. It SHOULD be derived from the reservationName attribute in the originating
ReservationTemplate.

5.6.3 reservedStartTime

This attribute describes the start time for the reservation. If the value is UNSET, it expresses an unrestricted
start time (i.e., minus infinity) for this reservation.

5.6.4 reservedEndTime

This attribute describes the end time for the reservation. If the value is UNSET, the behavior is
implementation-specific.

5.6.5 usersACL

The list of the users that are permitted to submit jobs to the reservation. The formatting of user identi-
ties is implementation-specific, but SHOULD be consistent with the user information representation in job
templates and reservation templates.

5.6.6 reservedSlots

This attribute describes the number of slots reserved by the DRM system. The value SHOULD range in
between ReservationTemplate::minSlots and ReservationTemplate::maxSlots.

5.6.7 reservedMachines

This attribute describes the set of machines that were reserved under the conditions described in the according
reservation template. Each SlotInfo instance in this list describes the reservation of a particular machine
and of a set of slots related to this machine. The sum of all slot counts in the sequence SHOULD be equal
to ReservationInfo::reservedSlots.

5.7 JobTemplate structure

A DRMAA application uses the JobTemplate structure to define characteristics of a job submission. The
template instance is passed to the DRMAA JobSession instance when job execution is requested.

struct JobTemplate {

string remoteCommand;

OrderedStringList args;

boolean submitAsHold;

boolean rerunnable;

Dictionary jobEnvironment;

string workingDirectory;

string jobCategory;

StringList email;

boolean emailOnStarted;

boolean emailOnTerminated;

drmaa-wg@ogf.org 21

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

string jobName;

string inputPath;

string outputPath;

string errorPath;

boolean joinFiles;

string reservationId;

string queueName;

long minSlots;

long maxSlots;

long priority;

OrderedStringList candidateMachines;

long minPhysMemory;

OperatingSystem machineOS;

CpuArchitecture machineArch;

AbsoluteTime startTime;

AbsoluteTime deadlineTime;

Dictionary stageInFiles;

Dictionary stageOutFiles;

Dictionary resourceLimits;

string accountingId;

};

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the
DRMAA application and the library implementation can determine untouched attribute members. If not
described differently in the following sections, all attributes SHOULD be allowed to have the UNSET value
on job submission.

The initialization to UNSET SHOULD be realized without additional methods in the DRMAA interface, if
possible. The according approach MUST be specified by the language binding.

The DRMAA job template concept makes a distinction between mandatory and optional attributes. Manda-
tory attributes MUST be supported by the implementation in the sense that they are evaluated on job
submission. Optional attributes MAY be evaluated on job submission, but MUST be provided as part of the
JobTemplate structure in the implementation. If an unsupported optional attribute has a value different to
UNSET, the job submission MUST fail with a UnsupportedAttributeException. DRMAA applications are
expected to check for the availability of optional attributes before using them (see Section 4.5).

An implementation MUST support JobTemplatePlaceholder placeholders at the occasions defined in this
specification. They MAY also allow their usage in other attributes.

A language binding specification SHOULD define how a JobTemplate instance is convertible to a string
for printing, through whatever mechanism is most natural for the implementation language. The resulting
string MUST contain the values of all set properties.

drmaa-wg@ogf.org 22

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

5.7.1 remoteCommand

This attribute describes the command to be executed on the remote host. In case this parameter contains
path information, it MUST be interpreted as relative to the execution host file system. The implementation
SHOULD NOT use the value of this attribute to trigger file staging activities. Instead, the file staging should
be performed by the application explicitly.

The behavior of the implementation with an UNSET value in this attribute is undefined.

The support for this attribute is mandatory.

5.7.2 args

This attribute contains the list of command-line arguments for the job(s) to be executed.

The support for this attribute is mandatory.

5.7.3 submitAsHold

This attribute defines if the job(s) should have QUEUED or QUEUED_HELD (see Section 8.1) as initial state after
submission. Since the boolean UNSET value defaults to False, jobs are submitted as non-held if this attribute
is not set.

The support for this attribute is mandatory.

5.7.4 rerunnable

This flag indicates if the submitted job(s) can safely be restarted by the DRM system, for example on
node failure or some other re-scheduling event. Since the boolean UNSET value defaults to False, jobs are
submitted as not rerunnable if this attribute is not set. This attribute SHOULD NOT be used to let the
application denote the checkpointability of a job.

The support for this attribute is mandatory.

5.7.5 jobEnvironment

This attribute holds the environment variable settings to be configured on the execution machine(s). The
values SHOULD override the execution host environment settings.

The support for this attribute is mandatory.

5.7.6 workingDirectory

This attribute specifies the directory where the job or the bulk jobs are executed. If the attribute
value is UNSET, the behavior is undefined. If set, the attribute value MUST be evaluated relative to
the file system on the execution host. The attribute value MUST be allowed to contain either the
JobTemplatePlaceholder::HOME_DIRECTORY or the JobTemplatePlaceholder::PARAMETRIC_INDEX place-
holder (see Section 4.4).

The workingDirectory attribute should be specified by the application in a syntax that is common at the
host where the job is executed. Implementations MAY perform according validity checks on job submission.
If the attribute is set and no placeholder is used, an absolute directory specification is expected. If the

drmaa-wg@ogf.org 23

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

attribute is set and the job was submitted successfully and the directory does not exist on the execution
host, the job MUST enter the state JobState::FAILED.

The support for this attribute is mandatory.

5.7.7 jobCategory

This attribute defines the job category to be used (see Section 1.4). A valid input SHOULD be one of
the strings in JobSession::jobCategories (see Section 8.2.3), otherwise an InvalidArgumentException

SHOULD be raised.

The support for this attribute is mandatory.

5.7.8 email

This attribute defines a list of email addresses that SHOULD be used when the DRM system sends status
notifications. Content and formatting of the emails are defined by the implementation or the DRM system.
If the attribute value is UNSET, no emails SHOULD be sent to the user running the job(s), even if the DRM
system default behavior is different.

The support for this attribute is optional, expressed by the DrmaaCapability::JT_EMAIL flag. If an imple-
mentation cannot configure the email notification functionality of the DRM system, or if the DRM system
has no such functionality, the attribute SHOULD NOT be supported in the implementation.

5.7.9 emailOnStarted / emailOnTerminated

The emailOnStarted flag indicates if the given email address(es) SHOULD get a notification when the job
(or any of the bulk jobs) entered one of the “Started” states. emailOnTerminated fulfills the same purpose
for the ”Terminated” states. Since the boolean UNSET value defaults to False, the notification about state
changes SHOULD NOT be sent if the attribute is not set.

The support for these attributes is optional, expressed by the DrmaaCapability::JT_EMAIL flag.

5.7.10 jobName

The job name attribute allows the specification of an additional non-unique string identifier for the job(s).
The implementation MAY truncate any client-provided job name to an implementation-defined length.

The support for this attribute is mandatory.

5.7.11 inputPath / outputPath / errorPath

This attribute specifies standard input / output / error stream of the job as file path. If the attribute value
is UNSET, the behavior is undefined. If set, the attribute value MUST be evaluated relative to the file system
of the execution host. Implementations MAY perform validity checks for the path syntax on job submission.
The attribute value MUST be allowed to contain any of the JobTemplatePlaceholder placeholders (see
Section 4.4). If the attribute is set and no placeholder is used, an absolute file path specification is expected.

If the outputPath or errorPath file does not exist at the time of job execution start, the file SHALL
automatically be created. An existing outputPath or errorPath file SHALL be opened in append mode.

drmaa-wg@ogf.org 24

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

If the attribute is set and the job was submitted successfully and the file cannot be created / read / written
on the execution host, the job MUST enter the state JobState::FAILED.

The support for this attribute is mandatory.

5.7.12 joinFiles

Specifies whether the error stream should be intermixed with the output stream. Since the boolean UNSET

value defaults to False, intermixing SHALL NOT happen if the attribute is not set.

If this attribute is set to True, the implementation SHALL ignore the value of the errorPath attribute and
intermix the standard error stream with the standard output stream as specified by the outputPath.

The support for this attribute is mandatory.

5.7.13 reservationId

Specifies the identifier of the existing advance reservation to be associated with the job(s). The application is
expected to generate this ID by creating an advance reservation through the ReservationSession interface.
The resulting reservationId (see Section 9.2.1) then acts as valid input for this job template attribute.
Implementations MAY support a reservation identifier from non-DRMAA information sources as valid in-
put. The behavior on conflicting settings between the job template and the granted advance reservation is
undefined.

The support for this attribute is mandatory.

5.7.14 queueName

This attribute specifies the name of the queue the job(s) should be submitted to. In case this attribute value
is UNSET, the implementation SHOULD use the DRM systems default queue. If no default queue is defined
or if the given queue name is not valid, the job submission MUST lead to an InvalidArgumentException.

The MonitoringSession::getAllQueues method (see Section 10.1) supports the determination of valid
queue names. Implementations SHOULD allow at least these queue names to be used in the queueName

attribute. Implementations MAY also support queue names from non-DRMAA information sources as valid
input.

If MonitoringSession::getAllQueues returns an empty list, this attribute MUST be only allowed to have
the value UNSET.

Since the meaning of “queues” is implementation-specific, there is no DRMAA-defined effect when using
this attribute. Implementations therefore should document the effects of this attribute in their targeted
environment.

The support for this attribute is mandatory.

5.7.15 minSlots

This attribute expresses the minimum number of slots requested per job (see also Section 1.2). If the value
of minSlots is UNSET, it SHOULD default to 1.

drmaa-wg@ogf.org 25

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

Implementations MAY interpret the slot count as number of concurrent processes being allowed to run.
If this interpretation is taken, and minSlots is greater than 1, than the jobCategory SHOULD also be
demanded on job submission, in order to express the nature of the intended parallel job execution.

The support for this attribute is mandatory.

5.7.16 maxSlots

This attribute expresses the maximum number of slots requested per job (see also Section 1.2). If the value
of maxSlots is UNSET, it SHOULD default to the value of minSlots.

Implementations MAY interpret the slot count as number of concurrent processes being allowed to run.
If this interpretation is taken, and maxSlots is greater than 1, than the jobCategory SHOULD also be
demanded on job submission, in order to express the nature of the intended parallel job execution.

The support for this attribute is optional, as indicated by the DrmaaCapability::JT_MAXSLOTS flag.

.

5.7.17 priority

This attribute specifies the scheduling priority for the job. The interpretation of the given value is
implementation-specific.

The support for this attribute is mandatory.

5.7.18 candidateMachines

Requests that the job(s) should run on this set or any subset (with minimum size of 1) of the given machines.
If the attribute value is UNSET, it should default to the result of the MonitoringSession::getAllMachines

method. If the resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised
on job submission time. If the problem can only be detected after job submission, the job should enter
JobState::FAILED.

The support for this attribute is mandatory.

5.7.19 minPhysMemory

This attribute denotes the minimum amount of physical memory in kilobyte that should be available for the
job. If the job gets more than one slot, the interpretation of this value is implementation-specific. If this
resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised at job submission
time. If the problem can only be detected after job submission, the job SHOULD enter JobState::FAILED
accordingly.

The support for this attribute is mandatory.

5.7.20 machineOS

This attribute denotes the expected operating system type on the / all execution host(s). If this resource de-
mand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If the
problem can only be detected after job submission, the job SHOULD enter JobState::FAILED accordingly.

The support for this attribute is mandatory.

drmaa-wg@ogf.org 26

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

5.7.21 machineArch

This attribute denotes the expected machine architecture on the / all execution host(s). If this resource
demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If
the problem can only be detected after job submission, the job should enter JobState::FAILED.

The support for this attribute is mandatory.

5.7.22 startTime

This attribute specifies the earliest time when the job may be eligible to be run.

The support for this attribute is mandatory.

5.7.23 deadlineTime

Specifies a deadline after which the implementation or the DRM system SHOULD change the job state to
any of the “Terminated” states (see Section 8.1).

The support for this attribute is optional, as expressed by the DrmaaCapability::JT_DEADLINE.

5.7.24 stageInFiles / stageOutFiles

This attribute specifies what files should be transferred (staged) as part of the job execution. The data
staging operation MUST be a copy operation between the submission host and a execution host. File
transfers between execution hosts are not covered by DRMAA.

The attribute value is formulated as dictionary. For each key-value pair in the dictionary, the key defines
the source path of one file or directory, and the value defines the destination path of one file or directory
for the copy operation. For stageInFiles, the submission host acts as source, and the execution host
act as destination. For stageOutFiles, the execution host acts as source, and the submission host act as
destination.

All values MUST be evaluated relative to the file system on the host in a syntax that is common at that
host. Implementations MAY perform according validity checks on job submission. Paths on the execution
host MUST be allowed to contain any of the JobTemplatePlaceholder placeholders. Paths on the submis-
sion host MUST be allowed to contain the JobTemplatePlaceholder::PARAMETRIC_INDEX placeholder (see
Section 4.4). If no placeholder is used, an absolute path specification on the particular host SHOULD be
assumed by the implementation.

Relative path specifications for the submission host should be interpreted starting from the current working
directory of the DRMAA application at the time of job submission. The behavior for relative path specifica-
tions on the execution is implementation-specific. Implementations MAY use JobTemplate::workingDirectory,
if defined, as starting point on the execution host.

Jobs SHOULD NOT enter JobState::DONE unless all staging operations are finished. The behavior in
case of missing files is implementation-specific. The support for wildcard operators in path specifications is
implementation-specific. Any kind of recursive or non-recursive copying behavior is implementation-specific.

If the job category (see Section 1.4) implies a parallel job (e.g., MPI), the copy operation SHOULD target
the execution host of the parallel job master as destination. A job category MAY also trigger file distribution
to other hosts participating in the job execution.

drmaa-wg@ogf.org 27

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

The support for this attribute is optional, expressed by the DrmaaCapability::JT_STAGING flag.

5.7.25 resourceLimits

This attribute specifies the limits on resource utilization of the job(s) on the execution host(s). The valid
dictionary keys and their value semantics are defined in Section 4.3.

The following resource restrictions should operate as soft limit, meaning that exceeding the limit SHOULD
NOT influence the job state from a DRMAA perspective:

• CORE_FILE_SIZE

• DATA_SEG_SIZE

• FILE_SIZE

• OPEN_FILES

• STACK_SIZE

• VIRTUAL_MEMORY

The following resource restrictions should operate as hard limit, meaning that exceeding the limit MAY
terminate the job. The termination MAY be performed by the DRM system. It MAY also be done by the
job itself if it reacts on a signal from the DRM system or the execution host operating system:

• CPU_TIME

• WALLCLOCK_TIME

The support for this attribute is mandatory. If only a subset of the attributes from ResourceLimitType

is supported by the implementation, and some of the unsupported attributes are used, the job submission
SHOULD raise an InvalidArgumentException expressing the fact that resource limits are supported in
general.

Conflicts of these attribute values with any other job template attribute or with referenced advance reser-
vations are handled in an implementation-specific manner. Implementations SHOULD try to delegate the
decision about parameter combination validity to the DRM system, in order to ensure similar semantics in
different DRMAA implementations for this system.

5.7.26 accountingId

This attribute denotes a string that can be used by the DRM system for job accounting purposes. Implemen-
tations SHOULD NOT utilize this information as authentication token, but only as untested identification
information in addition to the implementation-specific authentication (see Section 12).

The support for this attribute is optional, as described by the DrmaaCapability::JT_ACCOUNTINGID flag.

5.8 ReservationTemplate structure

In order to define the characteristics of a reported advance reservation, the DRMAA application creates an
ReservationTemplate instance and submits it through the ReservationSession methods.

struct ReservationTemplate {

string reservationName;

drmaa-wg@ogf.org 28

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

AbsoluteTime startTime;

AbsoluteTime endTime;

TimeAmount duration;

long minSlots;

long maxSlots;

string jobCategory;

StringList usersACL;

OrderedStringList candidateMachines;

long minPhysMemory;

OperatingSystem machineOS;

CpuArchitecture machineArch;

};

Similar to the JobTemplate concept (see Section 5.7), there is a distinction between mandatory and optional
attributes in the ReservationTemplate. Mandatory attributes MUST be supported by the implementation
in the sense that they are evaluated in a ReservationSession::requestReservation method call. Optional
attributes MAY NOT be evaluated by the particular implementation, but MUST be provided as part of the
ReservationTemplate structure in the implementation. If an optional attribute is not evaluated, but has a
value different to UNSET, the method call to ReservationSession::requestReservation MUST fail with
an UnsupportedAttributeException.

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the
DRMAA application and the library implementation can determine untouched attribute members.

A language binding specification SHOULD model the ReservationTemplate representation the same way as
the JobTemplate interface, and therefore MUST specify the realization of implementation-specific attributes,
printing, and the initialization to UNSET.

5.8.1 reservationName

A human-readable reservation name. The implementation MAY truncate or alter any application-provided
name in order to adjust it to DRMS-specific constraints. The name of the reservation SHALL be automati-
cally defined by the implementation if this attribute is UNSET.

The support for this attribute is mandatory.

5.8.2 startTime / endTime / duration

The time frame in which resources should be reserved. Table 4 explains the different possible parameter
combinations and their semantic.

The support for startTime and endTime is mandatory. The support for duration is optional, as described
by the DrmaaCapability::RT_DURATION flag. Implementations that do not support the described ”sliding
window” approach for the SET / SET / SET case SHOULD express this by NOT supporting the duration
attribute.

Implementations MAY support startTime to have the constant value NOW (see Section 3), which expresses
that the reservation should start at the time of reservation template approval in the DRM system. The
support for this feature is declared by the DrmaaCapability::RT_STARTNOW flag.

drmaa-wg@ogf.org 29

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

startTime endTime duration Description
UNSET UNSET UNSET Invalid, SHALL leave to an InvalidArgumentException.

Set UNSET UNSET Invalid, SHALL leave to an InvalidArgumentException.
UNSET Set UNSET Invalid, SHALL leave to an InvalidArgumentException.

Set Set UNSET Attempt to reserve resources in the specified time frame.
UNSET UNSET Set Attempt to reserve resources at least for the time amount given in

duration.
Set UNSET Set Implies endTime = startTime + duration

UNSET Set Set Implies startTime = endTime - duration

Set Set Set If endTime - startTime is larger than duration, perform a reser-
vation attempt where the demanded duration is fulfilled at the
earliest point in time after startTime, and without extending
endTime (”sliding window” approach). If endTime - startTime

is smaller than duration, the reservation attempt SHALL leave
to an InvalidArgumentException. If endTime - startTime and
duration are equal, duration SHALL be ignored.

Table 4: Parameter combinations for the advance reservation time frame. If duration is not supported, it
should be treated as UNSET.

5.8.3 minSlots

This attribute expresses the minimum number of slots requested per job (see also Section 1.2). If the value
of minSlots is UNSET, it SHOULD default to 1.

Implementations MAY interpret the slot count as number of concurrent processes being allowed to run.
If this interpretation is taken, and minSlots is greater than 1, than the jobCategory SHOULD also be
demanded on job submission, in order to express the nature of the intended parallel job execution.

The support for this attribute is mandatory.

5.8.4 maxSlots

This attribute expresses the maximum number of slots requested per job (see also Section 1.2). If the value
of maxSlots is UNSET, it SHOULD default to the value of minSlots.

Implementations MAY interpret the slot count as number of concurrent processes being allowed to run. If
this interpretation is taken, and maxSlots is greater than 1, than the jobCategory MAY also be demanded
on job submission, in order to express the nature of the intended parallel job execution.

The support for this attribute is mandatory.

5.8.5 jobCategory

This attribute defines the job category to be used (see Section 1.4). A valid input SHOULD be one of
the strings in JobSession::jobCategories (see Section 8.2.3), otherwise an InvalidArgumentException

SHOULD be raised.

The support for this attribute is mandatory.

drmaa-wg@ogf.org 30

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

5.8.6 usersACL

The list of the users that would be permitted to submit jobs to the created reservation. If the attribute value
is UNSET, it should default to the user running the application.

The support for this attribute is mandatory.

5.8.7 candidateMachines

Requests that the reservation SHALL be created for the given set of machines. Implementations and their
DRM system MAY decide to reserve only a subset of the given machines. If this attribute is not specified,
it should default to the result of MonitoringSession::getAllMachines (see Section 10.1).

The support for this attribute is mandatory.

5.8.8 minPhysMemory

Requests that the reservation SHALL be created with machines that have at least the given amount of
physical memory in kilobyte. Implementations MAY interpret this attribute value as filter for candidate
machines, or as memory reservation demand on a shared execution resource.

The support for this attribute is mandatory.

5.8.9 machineOS

Requests that the reservation must be created with machines that have the given type of operating system,
regardless of its version, with semantics as specified in Section 4.1.

The support for this attribute is optional, the availability is indicated by the
DrmaaCapability::RT_MACHINEOS flag.

5.8.10 machineArch

Requests that the reservation must be created for machines that have the given instruction set architecture,
with semantics as specified in Section 4.2.

The support for this attribute is optional, the availability is indicated by the
DrmaaCapability::RT_MACHINEARCH flag.

5.9 DrmaaReflective Interface

The DrmaaReflective interface allows an application to determine the set of supported implementation-
specific attributes. It also standardizes the read / write access to such attributes when their existence is
determined at run-time by the application.

For the second class of non-mandatory attributes, the optional ones, applications are expected to use the
DRMAA capabiliy feature (see Section 4.5).

interface DrmaaReflective {

readonly attribute StringList jobTemplateImplSpec;

readonly attribute StringList jobInfoImplSpec;

readonly attribute StringList reservationTemplateImplSpec;

drmaa-wg@ogf.org 31

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

readonly attribute StringList reservationInfoImplSpec;

readonly attribute StringList queueInfoImplSpec;

readonly attribute StringList machineInfoImplSpec;

readonly attribute StringList notificationImplSpec;

string getInstanceValue(in any instance , in string name);

void setInstanceValue(in any instance , in string name , in string value);

string describeAttribute(in any instance , in string name);

};

5.9.1 jobTemplateImplSpec

This attribute provides the list of supported implementation-specific JobTemplate attributes.

5.9.2 jobInfoImplSpec

This attribute provides the list of supported implementation-specific JobInfo attributes.

5.9.3 reservationTemplateImplSpec

This attribute provides the list of supported implementation-specific ReservationTemplate attributes.

5.9.4 reservationInfoImplSpec

This attribute provides the list of supported implementation-specific ReservationInfo attributes.

5.9.5 queueInfoImplSpec

This attribute provides the list of supported implementation-specific QueueInfo attributes.

5.9.6 machineInfoImplSpec

This attribute provides the list of supported implementation-specific MachineInfo attributes.

5.9.7 notificationImplSpec

This attribute provides the list of supported implementation-specific DrmaaNotification attributes.

5.9.8 getInstanceValue

This method allows to retrieve the attribute value for name from the structure instance referenced in the
instance parameter. The return value is the stringified current attribute value.

5.9.9 setInstanceValue

This method allows to set the attribute name to value in the structure instance referenced in the instance

parameter. In case the conversion from string input into the native attribute type leads to an error,
InvalidArgumentException SHALL be thrown.

drmaa-wg@ogf.org 32

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

5.9.10 describeAttribute

This method returns a human-readable description of an attributes purpose, for the attribute referenced by
name and instance. The content and language of the result value is implementation-specific.

6 Common Exceptions

The exception model specifies error information that MAY be returned by a DRMAA implementation on
method calls. Implementations MAY also wrap DRMS-specific error conditions in DRMAA exceptions.

exception DeniedByDrmsException {string message ;};

exception DrmCommunicationException {string message ;};

exception TryLaterException {string message ;};

exception SessionManagementException {string message ;};

exception TimeoutException {string message ;};

exception InternalException {string message ;};

exception InvalidArgumentException {string message ;};

exception InvalidSessionException {string message ;};

exception InvalidStateException {string message ;};

exception OutOfResourceException {string message ;};

exception UnsupportedAttributeException {string message ;};

exception UnsupportedOperationException {string message ;};

The exceptions have the following general meaning, if not specified otherwise in a method description:

DeniedByDrmsException: The DRM system rejected the operation due to security issues.

DrmCommunicationException: The DRMAA implementation could not contact the DRM system. The
problem source is unknown to the implementation, so it is unknown if the problem is transient or not.

TryLaterException: The DRMAA implementation detected a transient problem while performing the
operation, for example due to excessive load. The application is recommended to retry the operation.

TimeoutException: The timeout given in one the waiting functions was reached without successfully
finishing the waiting attempt.

InternalException: An unexpected or internal error occurred in the DRMAA library, for example a system
call failure. It is unknown if the problem is transient or not.

InvalidArgumentException: From the viewpoint of the DRMAA library, an input parameter for the
particular method call is invalid or inappropriate. If the parameter is a structure, the exception
description SHOULD contain the name(s) of the problematic structure attribute(s).

InvalidSessionException: The session used for the method call is not valid, for example since the session
was closed before.

InvalidStateException: The operation is not allowed in the current state of the job.

OutOfResourceException: The implementation has run out of operating system resources, such as
buffers, main memory, or disk space.

UnsupportedAttributeException: The optional attribute is not supported by this DRMAA implemen-
tation.

drmaa-wg@ogf.org 33

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

UnsupportedOperationException: The method is not supported by this DRMAA implementation.

The DRMAA specification assumes that programming languages targeted by language bindings typically
support the concept of exceptions. If a destination language does not support them (like ANSI C), the
language binding specification SHOULD map error reporting to an appropriate alternative concept.

A language binding MAY chose to model exceptions as numeric error codes. In this case, the language
binding specification SHOULD specify numeric values for all DRMAA error constants.

The representation of exceptions in the language binding MUST support a possibility to express an additional
error cause as textual description. This is intended as specialization of the general error information.

Object-oriented language bindings MAY decide to derive all exception classes from one or multiple base
classes, in order to support generic catch clauses.

Language bindings MAY decide to introduce a hierarchical ordering of DRMAA exceptions based on class
derivation. In this case, any new exceptions added for aggregation purposes SHOULD be prevented from
being thrown, for example by marking them as abstract.

Language bindings SHOULD replace a DRMAA exception by some semantically equivalent native exception
from the application runtime environment, if available.

The UnsupportedAttributeException may either be raised by a setter function for an attribute, or by the
job submission function. This depends on the language binding design. A consistent decision for either one
or the other approach MUST be declared by the language binding specification.

7 The DRMAA Session Concept

DRMAA relies on a session concept for most parts of the API, in order to support the persistency of job
and advance reservation information in multiple runs of short-lived applications. Typical examples are job
submission portals or command-line tools. The session concept also allows implementations to perform DRM
system attach / detach action at dedicated points in the application control flow.

7.1 SessionManager Interface

interface SessionManager{

readonly attribute string drmsName;

readonly attribute Version drmsVersion;

readonly attribute string drmaaName;

readonly attribute Version drmaaVersion;

boolean supports(in DrmaaCapability capability );

JobSession createJobSession(in string sessionName ,

in string contact );

ReservationSession createReservationSession(in string sessionName ,

in string contact );

JobSession openJobSession(in string sessionName );

ReservationSession openReservationSession(in string sessionName );

MonitoringSession openMonitoringSession (in string contact );

void closeJobSession(in JobSession s);

void closeReservationSession(in ReservationSession s);

drmaa-wg@ogf.org 34

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

void closeMonitoringSession(in MonitoringSession s);

void destroyJobSession(in string sessionName );

void destroyReservationSession(in string sessionName );

StringList getJobSessionNames ();

StringList getReservationSessionNames ();

void registerEventNotification(in DrmaaCallback callback );

};

The SessionManager interface is the main interface of a DRMAA implementation for establishing commu-
nication with the DRM system. By the help of this interface, sessions for job management, monitoring,
and/or reservation management can be maintained.

Job and reservation sessions maintain persistent state information (about jobs and reservations created)
between application runs. State data SHOULD be persisted in the DRMS itself. If this is not supported,
the DRMAA implementation MUST realize the persistency. The data SHOULD be saved when the session
is closed by the according method in the SessionManager interface.

The state information SHOULD be kept until the job or reservation session is explicitly reaped by the
according destroy method in the SessionManager interface. If an implementation runs out of resources
for storing session information, the closing function SHOULD throw an OutOfResourceException. If an
application ends without closing the session properly, the behavior is unspecified.

The contact parameter in some of the interface methods SHALL allow the application to specify which
DRM system instance to use. A contact string represents a specific installation of a specific DRM system,
e.g., a Condor central manager machine at a given IP address, or a Grid Engine ‘root’ and ‘cell’. Contact
strings are always implementation-specific and therefore opaque to the application. If contact has the value
UNSET, a default DRM system SHOULD be contacted. The manual configuration or automated detection of
a default contact string is implementation-specific.

The re-opening of a session MUST work on the machine where the session was originally created. Imple-
mentations MAY also offer to re-open the session on another machine, if the state information is accessible.

An implementation MUST allow the application to have multiple open sessions of the same or different type
at the same time. This includes the proper coordination of parallel calls to session methods that share state
information.

A SessionManager instance SHALL be available as singleton at DRMAA application start. Language
bindings MAY realize this by mapping the session manager methods to global functions.

7.1.1 drmsName

A read-only system identifier denoting the DRM system targeted by the implementation, e.g., “LSF” or
“GridWay”. Implementations SHOULD NOT make versioning information of the particular DRM system a
part of this attribute value.

The value is only intended as informative output for application users.

7.1.2 drmsVersion

This attribute provides the DRM-system specific version information.

drmaa-wg@ogf.org 35

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

The value is only intended as informative output for application users.

7.1.3 drmaaName

This attribute contains a string identifying the vendor of the DRMAA implementation.

The value is only intended as informative output for application users.

7.1.4 drmaaVersion

This attribute provides the minor / major version number information for the DRMAA implementation.
The major version number MUST be the constant value “2”, the minor version number SHOULD be used
by the DRMAA implementation for expressing its own versioning information.

7.1.5 supports

This method allows to test if the DRMAA implementation supports a feature specified as optional. The
allowed input values are specified in the DrmaaCapability enumeration (see Section 4.5). This method
SHOULD throw no exceptions.

7.1.6 createJobSession / createReservationSession

The method creates a new job / reservation session instance. On successful completion of this method, the
necessary initialization for making the session usable MUST be completed. Examples are the connection
establishment from the DRMAA library to the DRM system, or the prefetching of information from non-
thread-safe operating system calls.

The sessionName parameter denotes a unique name to be used for the new session. If a session with such a
name already exists, the method MUST throw an InvalidArgumentException. In all other cases, including
if the provided name has the value UNSET, a new session MUST be created with a unique name generated
by the implementation.

If the DRM system does not support advance reservation, than createReservationSession SHALL throw
an UnsupportedOperationException.

7.1.7 openJobSession / openReservationSession

The method is used to open a persisted JobSession or ReservationSession instance that has previously
been created under the given sessionName. The implementation MUST support the case that the session
have been created by the same application or by a different application running on the same machine. The
implementation MAY support the case that the session was created or updated on a different machine. If
no session with the given sessionName exists, an InvalidArgumentException MUST be raised.

If the session referenced by sessionName is already opened, implementations MAY return this job or reser-
vation session instance.

If the DRM system does not support advance reservation, openReservationSession SHALL throw an
UnsupportedOperationException.

drmaa-wg@ogf.org 36

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

7.1.8 openMonitoringSession

The method opens a stateless MonitoringSession instance for fetching information about the DRM system.
On successful completion of this method, the necessary initialization for making the session usable MUST
be completed. One example is the connection establishment from the DRMAA library to the DRM system.

7.1.9 closeJobSession / closeReservationSession / closeMonitoringSession

The method MUST perform the necessary action to disengage from the DRM system. It SHOULD be callable
only once, by only one of the application threads. This SHOULD be ensured by the library implementation.
Additional calls beyond the first one SHOULD lead to a InvalidSessionException error notification.

For JobSession or ReservationSession instances, the according state information MUST be saved to some
stable storage before the method returns. This method SHALL NOT affect any jobs or reservations in the
session (e.g., queued and running jobs remain queued and running).

If the DRM system does not support advance reservation, closeReservationSession SHALL throw an
UnsupportedOperationException.

A language binding MAY define implicit calls to closeJobSession, closeReservationSession, or
closeMonitoringSession, for example when session objects are destroyed. It MAY also add a close

method to JobSession, ReservationSession, or MonitoringSession with the same functionality as de-
scribed here. However, the SessionManager still MUST contain all methods as described in this specfication.

7.1.10 destroyJobSession / destroyReservationSession

The method MUST do whatever work is required to reap persistent or cached state information for the
given session name. It is intended to be used when no session instance with this particular name is open.
If session instances for the given name exist, they MUST become invalid after this method was finished
successfully. Invalid sessions MUST throw InvalidSessionException on every attempt of utilization. This
method SHALL NOT affect any jobs or reservations in the session, e.g., queued and running jobs remain
queued and running.

If the DRM system does not support advance reservation, destroyReservationSession SHALL throw an
UnsupportedOperationException.

7.1.11 getJobSessionNames

This method returns a list of JobSession names that are valid input for the openJobSession method.

7.1.12 getReservationSessionNames

This method returns a list of ReservationSession names that are valid input for the
openReservationSession method.

If the DRM system does not support advance reservation, the method SHALL always throw an
UnsupportedOperationException.

drmaa-wg@ogf.org 37

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

7.1.13 registerEventNotification

This method is used to register a DrmaaCallback interface (see Section 8.3) offered by the DRMAA-based
application, which can be called by the implementation. If the callback functionality is not supported by the
DRMAA implementation, this method SHALL raise an UnsupportedOperationException. Implementation
can check for the support through the DrmaaCapability::CALLBACK flag (see Section 4.5). Implementations
with callback support SHOULD allow to perform multiple registration calls that just update the callback
target.

If the argument of the method call is UNSET, the currently registered callback MUST be unregistered. After
such a method call returned, no more events SHALL be delivered to the application. If no callback target is
registered, such a method call SHOULD return immediately without an error.

A language binding specification MUST define how the reference to an interface-compliant method can be
given as argument to this method. It MUST also clarify how to pass an UNSET callback method reference.

8 Working with Jobs

A DRMAA job represents a single computational activity that is executed by the DRM system. There
are three relevant method sets for working with jobs: The JobSession interface represents all control and
monitoring functions available for jobs. The Job interface represents the common control functionality for
one existing job. Sets of jobs resulting from a bulk submission are controllable as a whole by the JobArray

interface.

8.1 The DRMAA State Model

DRMAA defines the following states for jobs:

enum JobState {

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,

REQUEUED_HELD , DONE , FAILED };

UNDETERMINED: The job status cannot be determined. This is a permanent issue, not being solvable
by asking again for the job state.

QUEUED: The job is queued for being scheduled and executed.

QUEUED HELD: The job has been placed on hold by the system, the administrator, or the submitting
user.

RUNNING: The job is running on an execution host.

SUSPENDED: The job has been suspended by the user, the system or the administrator.

REQUEUED: The job was re-queued by the DRM system, and is eligible to run.

REQUEUED HELD: The job was re-queued by the DRM system, and is currently placed on hold by the
system, the administrator, or the submitting user.

DONE: The job finished without an error.

FAILED: The job exited abnormally before finishing.

drmaa-wg@ogf.org 38

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

If a DRMAA job state has no representation in the underlying DRMS, the DRMAA implementation MAY
never report that job state value. However, all DRMAA implementations MUST provide the JobState

enumeration as given here. An implementation SHOULD NOT return any job state value other than those
defined in the JobState enumeration.

The status values relate to the DRMAA job state transition model, as shown in Figure 1.

TerminatedStartedQueued

QUEUED

QUEUED_HELD

RUNNING

SUSPENDED

DONE

FAILED

UNDETERMINED

REQUEUED

REQUEUED_HELD

runJob()
runBulkJobs()

Figure 1: DRMAA Job State Transition Model

The transition diagram in Figure 1 expresses the classification of possible job states into “Queued”, “Started”,
and “Terminated”. The “Terminated” class of states is final, meaning that no further state transition is
allowed.

Implementations SHALL NOT introduce other job transitions (e.g., from RUNNING to QUEUED) beside the ones
stated in Figure 1, even if they might happen in the underlying DRM system. In this case, implementations
MAY emulate the necessary intermediate steps for the DRMAA-based application.

When an application requests job state information, the implementation SHOULD also provide the
jobSubState value (see Section 5.5.6) to explain DRM-specific details about the job state. The value
of this attribute is implementation-specific, but should be documented properly. Examples are extra states
for staging phases or details on the hold reason. Implementations SHOULD define a DRMS-specific data
structure for the sub-state information that can be converted to / from the data type defined by the language
binding.

drmaa-wg@ogf.org 39

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

The IDL definition declares the jobSubState attribute as type any, expressing the fact that the language
binding MUST map the data type to a generic language type (e.g., void*, Object) that keeps source code
portability across DRMAA implementations, and accepts an UNSET value.

The DRMAA job state model can be mapped to other high-level API state models. Table 5 gives a non-
normative set of examples.

DRMAA JobState SAGA JobState [4] OGSA-BES Job State [3]
UNDETERMINED N/A N/A
QUEUED Running Pending (Queued)
QUEUED HELD Running Pending (Queued)
RUNNING Running Running (Executing)
SUSPENDED Suspended Running (Suspended)
REQUEUED Running Running (Queued)
REQUEUED HELD Running Running (Queued)
DONE Done Finished
FAILED Cancelled, Failed Cancelled, Failed

Table 5: Example Mapping of DRMAA Job States

8.2 JobSession Interface

A job session instance acts as container for job instances controlled through the DRMAA API. The session
methods support the submission of new jobs and the monitoring of existing jobs. The relationship between
jobs and their session MUST be persisted, as described in Section 7.1.

interface JobSession {

readonly attribute string contact;

readonly attribute string sessionName;

readonly attribute StringList jobCategories;

JobList getJobs(in JobInfo filter );

JobArray getJobArray(in string jobArrayId );

Job runJob(in JobTemplate jobTemplate );

JobArray runBulkJobs(

in JobTemplate jobTemplate ,

in long beginIndex ,

in long endIndex ,

in long step ,

in long maxParallel );

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout );

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout );

};

8.2.1 contact

This attribute reports the contact value that was used in the SessionManager::createJobSession call
for this instance (see Section 7.1). If no value was originally provided, the default contact string from the

drmaa-wg@ogf.org 40

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

implementation MUST be returned. This attribute is read-only.

8.2.2 sessionName

This attribute reports the session name, a value that resulted from the SessionManager::createJobSession
or SessionManager::openJobSession call for this instance (see Section 7.1). This attribute is read-only.

8.2.3 jobCategories

This method provides the list of valid job category names which can be used for the jobCategory attribute
in a JobTemplate instance. Further details about job categories are described in Section 1.4.

8.2.4 getJobs

This method returns the set of jobs that belong to the job session. The filter parameter allows to choose
a subset of the session jobs as return value. The semantics of the filter argument are explained in Section
5.5. If no job matches or the session has no jobs attached, the method MUST return an empty set. If filter
is UNSET, all session jobs MUST be returned.

Time-dependent effects of this method, such as jobs no longer matching to filter criteria on evaluation time,
are implementation-specific. The purpose of the filter parameter is to keep scalability with a large number
of jobs per session. Applications therefore must consider the possibly changed state of jobs during their
evaluation of the method result.

8.2.5 getJobArray

This method returns the JobArray instance with the given ID. If the session does not / no longer contain
the according job array, InvalidArgumentException SHALL be thrown.

8.2.6 runJob

The runJob method submits a job with the attributes defined in the given job template instance. The
method returns a Job object that represents the job in the underlying DRM system. Depending on the job
template settings, submission attempts may be rejected with an InvalidArgumentException. The error
details SHOULD provide further information about the attribute(s) responsible for the rejection.

When this method returns a valid Job instance, the following conditions SHOULD be fulfilled:

• The job is part of the persistent state of the job session.

• All non-DRMAA and DRMAA interfaces to the DRM system report the job as being submitted to
the DRM system.

• The job has one of the DRMAA job states.

8.2.7 runBulkJobs

The runBulkJobs method creates a set of parametric jobs, each with attributes as defined in the given job
template instance. Each job in the set has the same attributes, except for the job template attributes that
include the JobTemplatePlaceholder::PARAMETRIC_INDEX macro (see Section 4.4).

drmaa-wg@ogf.org 41

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

If any of the resulting parametric job templates is not accepted by the DRM system, the method call MUST
raise an InvalidArgumentException. No job from the set SHOULD be submitted in this case.

The first job in the set has an index equal to the beginIndex parameter of the method call. The smallest
valid value for beginIndex is 1. The next job has an index equal to beginIndex + step, and so on. The last
job has an index equal to beginIndex + n * step, where n is equal to(endIndex - beginIndex) / step.
The index of the last job may not be equal to endIndex if the difference between beginIndex and endIndex

is not evenly divisible by step. The beginIndex value must be less than or equal to endIndex, and only
positive index numbers are allowed, otherwise the method SHOULD raise an InvalidArgumentException.

Jobs can determine their index number at run time by the mechanism described in Section 8.6.

The maxParallel parameter allows to specify how many of the bulk job’s instances are allowed to run in
parallel on the utilized resources. Implementations MAY consider this value if the DRM system supports such
functionality, otherwise the parameter MUST be silently ignored. If given, the support MUST be expressed
by the DrmaaCapability::BULK_JOBS_MAXPARALLEL capability flag (see Section 4.5). If the parameter value
is UNSET, no limit SHOULD be applied.

The runBulkJobs method returns a JobArray (see Section 8.5) instance that represents the set of Job

objects created by the method call under a common array identity. For each of the jobs in the array, the
same conditions as for the result of runJob SHOULD apply.

The largest (syntactically) allowed value for endIndex MUST be defined by the language binding.

Further restrictions on the maximum endIndex MAY be implied by the implementation.

8.2.8 waitAnyStarted / waitAnyTerminated

The waitAnyStarted method blocks until any of the jobs referenced in the jobs parameter entered one of
the “Started” states. The waitAnyTerminated method blocks until any of the jobs referenced in the jobs

parameter entered one of the “Terminated” states (see Section 8.1). If the input list contains jobs that are
not part of the session, the method SHALL fail with an InvalidArgumentException.

The timeout argument specifies the desired waiting time for the state change. The constant value
INFINITE_TIME MUST be supported to get an indefinite waiting time. The constant value ZERO_TIME

MUST be supported to express that the method call SHALL return immediately. A number of seconds
can be specified to indicate the maximum waiting time . If the method call returns because of timeout, an
TimeoutException SHALL be raised.

An application waiting for some condition to happen in all jobs of a set is expected to perform looped calls
of these waiting functions.

8.3 DrmaaCallback Interface

The DrmaaCallback interface allows the DRMAA library or the DRM system to inform the application
about relevant events in an asynchronous fashion. One expected use case is continuous monitoring of job
state transitions. The implementation MAY decide to not deliver all events occurring in the DRM system.
The support for such callback functionality is optional, indicated by the DrmaaCallback::CALLBACK flag.
Also, all implementations MUST define the DrmaaCallback interface type as given in the language binding,
regardless of the support for these functions.

drmaa-wg@ogf.org 42

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

interface DrmaaCallback {

void notify(in DrmaaNotification notification );

};

struct DrmaaNotification {

DrmaaEvent event;

string jobId;

string sessionName;

JobState jobState;

};

enum DrmaaEvent {

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE

};

The application implements a DrmaaCallback interface as pre-condition for using this functionality. This
interface is registered through the SessionManager::registerEventNotification method (see Section
7.1). On notification, the implementation or the DRM system pass a DrmaaNotification instance to the
application. Implementations MAY extend this structure for further information (see Section 5). All given
information SHOULD be valid at least at the time of notification generation.

The DrmaaNotification::jobState attribute expresses the state of the job at the time of notification
generation.

The DrmaaEvent enumeration defines standard event types for notification:

NEW STATE The job entered a new state, which is described in the jobState attribute.

MIGRATED The job was migrated to another execution host, and is now in the state described by
jobState.

ATTRIBUTE CHANGE A monitoring attribute of the job, such as the memory consumption, changed
to a new value. The jobState attribute MAY have the value UNSET on this event.

DRMAA implementations SHOULD protect themselves from unexpected behavior of the called application.
This includes indefinite delays or unexpected exceptions from the callee on notification processing. The
implementation SHOULD prevent a nested callback at the time of occurrence, and MAY decide to deliver
the according events at a later point in time.

Scalability issues of the notification facility are out of scope for this specification. Implementations MAY
support non-standardized throttling configuration options.

8.4 Job Interface

Every job in the JobSession is represented by an own instance of the Job interface. It allows one to instruct
the DRM system for a job status change, and to query the properties of the job in the DRM system.
Implementations MAY provide Job objects for jobs created outside of a DRMAA session.

interface Job {

readonly attribute string jobId;

readonly attribute string sessionName;

readonly attribute JobTemplate jobTemplate;

drmaa-wg@ogf.org 43

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

void suspend ();

void resume ();

void hold ();

void release ();

void terminate ();

JobState getState(out any jobSubState );

JobInfo getInfo ();

Job waitStarted(in TimeAmount timeout );

Job waitTerminated(in TimeAmount timeout );

};

8.4.1 jobId

This attribute reports the stringified job identifier assigned by the DRM system. This method is expected
to be used as fast alternative to the fetching of a complete JobInfo instance.

8.4.2 sessionName

This attribute reports the name of the JobSession that was used to create the job. If the session name
cannot be determined, for example since the job was created outside of a DRMAA session, the attribute
SHOULD be UNSET.

8.4.3 jobTemplate

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was
used for the job submission creating this Job instance.

For jobs created outside of a DRMAA session, implementations MUST also return a JobTemplate instance
here, which MAY be empty or only partially filled.

8.4.4 suspend / resume / hold / release / terminate

The job control functions allow modifying the status of the single job in the DRM system, according to the
state model presented in Section 8.1.

The suspend method triggers a transition from RUNNING to SUSPENDED state.

The resume method triggers a transition from SUSPENDED to RUNNING state.

The hold method triggers a transition from QUEUED to QUEUED_HELD, or from REQUEUED to REQUEUED_HELD

state.

The release method triggers a transition from QUEUED_HELD to QUEUED, or from REQUEUED_HELD to REQUEUED

state.

The terminate method triggers a transition from any of the “Started” states to one of the “Terminated”
states.

If the job is in an inappropriate state for the particular method call, it MUST raise an
InvalidStateException.

drmaa-wg@ogf.org 44

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

The methods SHOULD return after the action has been acknowledged by the DRM system, but MAY
return before the action has been completed. Some DRMAA implementations MAY allow these methods to
be used to control jobs submitted externally to the DRMAA session. Examples are jobs submitted by other
DRMAA sessions, in other DRMAA implementations, or jobs submitted via native utilities. This behavior
is implementation-specific.

8.4.5 getState

This method allows the application to get the current status of the job according to the DRMAA state
model, together with an implementation specific sub state (see Section 8.1). It is intended as fast alternative
to the fetching of a complete JobInfo instance. The timing conditions are described in Section 5.5.

8.4.6 getInfo

This method returns a JobInfo instance for the particular job, under the conditions described in Section
5.5.

8.4.7 waitStarted / waitTerminated

The waitStarted method blocks until the job entered one of the “Started” states. The waitTerminated

method blocks until the job entered one of the “Terminated” states (see Section 8.1). All other behavior
MUST work as described in Section 8.2.8.

8.5 JobArray Interface

An instance of the JobInfo interface represents a set of jobs created by one operation. In DRMAA, JobArray
instances are only created by the runBulkJobs method (see Section 8.2). JobArray instances differ from the
JobList data structure due to their potential for representing a DRM system concept, while JobList is a
DRMAA-only concept realized by language binding support.

Implementations SHOULD realize the JobArray functionality as wrapper for DRM system job arrays, if
available. If the DRM system has only single job support or incomplete job array support with respect to
the DRMAA-provided functionality, implementations MUST offer the JobArray functionality on their own,
for example based on looped activities with a list of jobs.

interface JobArray {

readonly attribute string jobArrayId;

readonly attribute JobList jobs;

readonly attribute string sessionName;

readonly attribute JobTemplate jobTemplate;

void suspend ();

void resume ();

void hold ();

void release ();

void terminate ();

};

drmaa-wg@ogf.org 45

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

8.5.1 jobArrayId

This attribute reports the stringified job identifier assigned to the job array by the DRM system. If the
DRM system has no job array support, the implementation MUST generate a system-wide unique identifier
for the result of the runBulkJobs method.

8.5.2 jobs

This attribute provides the list of jobs that are part of the job array, regardless of their state.

8.5.3 sessionName

This attribute states the name of the JobSession that was used to create the bulk job represented by this
instance. If the session name cannot be determined, for example since the bulk job was created outside of a
DRMAA session, the attribute SHOULD have an UNSET value.

8.5.4 jobTemplate

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was
used for the job submission creating this JobArray instance.

8.5.5 suspend / resume / hold / release / terminate

The job control functions allow modifying the status of the job array in the DRM system, with the same
semantic as in the Job interface (see Section 8.4.4). If one of the jobs in the array is in an inappropriate
state for the particular method, the method MAY raise an InvalidStateException.

The methods SHOULD return after the action has been acknowledged by the DRM system for all jobs
in the array, but MAY return before the action has been completed for all of the jobs. Some DRMAA
implementations MAY allow this method to be used to control job arrays created externally to the DRMAA
session. This behavior is implementation-specific.

8.6 The DRMAA INDEX VAR environment variable

DRMAA implementations SHOULD implicitly set an environment variable with the name DRMAA_INDEX_VAR
for each job submitted to the DRM system.

An expected implementation strategy would be the transparent addition of an environment variable spec-
ification in the job submission. Such a definition SHOULD NOT be visible for the application as part of
the job template. If the application defines its own DRMAA_INDEX_VAR environment variable, it SHOULD
override the implementation-defined value.

The environment variable MUST contain the name of the DRM system environment variable that holds
the parametric job index. Examples are TASK_ID in GridEngine, PBS_ARRAYID in Torque, or LSB_JOBINDEX
in LSF. By doing an indirect fetching of the environment variable value, jobs are enabled to get their own
parametric index regardless of the DRM system type. For DRM systems that do not provide such an
environment variable, DRMAA_INDEX_VAR SHOULD not be set.

drmaa-wg@ogf.org 46

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

9 Working with Advance Reservation

Advance reservation is a DRM system concept that allows the reservation of execution resources for jobs to
be submitted in the future. DRMAA encapsulates such functionality of a DRM system with the interfaces
and data structures described in this chapter.

DRMAA implementations for a DRM system that does not support advance reservation MUST still imple-
ment the described interfaces, in order to keep source code portability for DRMAA-based applications. All
methods related to advance reservation MUST raise an UnsupportedOperationExeption in this case. Sup-
port for advance reservation is expressed by the DrmaaCapability::ADVANCE_RESERVATION flag (see Section
4.5).

9.1 ReservationSession Interface

Every ReservationSession instance acts as container for advance reservations in the DRM system. Every
Reservation instance SHALL belong only to one ReservationSession instance.

interface ReservationSession {

readonly attribute string contact;

readonly attribute string sessionName;

Reservation getReservation(in string reservationId );

Reservation requestReservation(in ReservationTemplate reservationTemplate );

ReservationList getReservations ();

};

9.1.1 contact

This attribute reports the contact value that was used in the createReservationSession call for this
instance (see Section 7.1). If no value was originally provided, the default contact string from the implemen-
tation MUST be returned. This attribute is read-only.

9.1.2 sessionName

This attribute reports the name of the session that was used for creating or opening this Reservation

instance (see Section 7.1). This attribute is read-only.

9.1.3 getReservation

This method returns the Reservation instance that has the given reservationId. Implementations MAY
support the access to reservations created outside of a DRMAA session scope, under the same regulari-
ties as for the MonitoringSession::getAllReservations method (see Section 10.1.1). If no reservation
matches, the method SHALL raise an InvalidArgumentException. Time-dependent effects of this method
are implementation-specific.

9.1.4 requestReservation

The requestReservation method SHALL request an advance reservation in the DRM system as described
by the ReservationTemplate. On a successful reservation, the method returns a Reservation instance that
represents the advance reservation in the underlying DRM system.

drmaa-wg@ogf.org 47

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

If the current user is not authorized to create reservations, DeniedByDrmsException SHALL be raised. If
the reservation cannot be performed by the DRM system due to invalid ReservationTemplate attributes,
or if the demanded combination of resources is not available, InvalidArgumentException SHALL be raised.
The exception SHOULD provide further details about the rejection cause in the extended error information
(see Section 6).

Some of the requested conditions might be not fulfilled after the reservation was successfully created, for
example due to execution host outages. In this case, the reservation itself SHOULD remain valid. A job
using such a reservation may spend additional time in one of the non-RUNNING states. In this case, the
JobInfo::jobSubState information SHOULD inform about this situation.

9.1.5 getReservations

This method returns the list of reservations successfully created so far in this session, regardless of their start
and end time. The list of Reservation instances is only cleared in conjunction with the destruction of the
actual session instance through SessionManager::destroyReservationSession (see Section 7.1).

9.2 Reservation Interface

The Reservation interface represents attributes and methods available for an advance reservation suc-
cessfully created in the DRM system. Implementations MAY offer Reservation instances for advance
reservations created outside of a DRMAA session.

interface Reservation {

readonly attribute string reservationId;

readonly attribute string sessionName;

readonly attribute ReservationTemplate reservationTemplate;

ReservationInfo getInfo ();

void terminate ();

};

9.2.1 reservationId

The reservationId is an opaque string identifier for the advance reservation. If the DRM system has
identifiers for advance reservations, this attribute SHOULD provide the according value. If not, the DRMAA
implementation MUST generate a value that is unique in time and extend of the DRM system.

9.2.2 sessionName

This attribute states the name of the ReservationSession that was used to create the advance reservation
instance. If the session name cannot be determined, for example since the reservation was created outside
of a DRMAA session, the attribute SHOULD have an UNSET value.

9.2.3 reservationTemplate

This attribute provides a reference to a ReservationTemplate instance that has equal values to the one that
was used to create this reservation. For reservations created outside of a DRMAA session, implementations
MUST also return a ReservationTemplate instance, which MAY be empty or only partially filled.

drmaa-wg@ogf.org 48

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

9.2.4 getInfo

This method returns a ReservationInfo instance under the conditions described in Section 5.6. The method
SHOULD throw InvalidArgumentException if the reservation is already expired (i.e., its end time passed),
or if it was terminated before.

9.2.5 terminate

This method terminates the advance reservation represented by this Reservation instance. All jobs submit-
ted with a reference to this reservation SHOULD be terminated by the DRM system or the implementation,
regardless of their current state.

10 Monitoring the DRM System

The monitoring support in DRMAA focusses on the investigation of resources and on global data maintained
by the DRM system. Session-related information is available from the JobSession and ReservationSession

instances, respectively.

10.1 MonitoringSession Interface

The MonitoringSession interface provides a set of stateless methods for fetching information about the
DRM system and the DRMAA implementation itself.

interface MonitoringSession {

ReservationList getAllReservations ();

JobList getAllJobs(in JobInfo filter );

QueueInfoList getAllQueues(in StringList names );

MachineInfoList getAllMachines(in StringList names );

};

All returned data SHOULD be related to the current user running the DRMAA-based application. For
example, the getAllQueues function MAY be reduced to only report queues that are usable or generally
accessible for the DRMAA application and the user performing the query.

Because of cases where such a list reduction may demand excessive overhead in the DRMAA implementa-
tion, an unreduced or only partially reduced result MAY also be returned. The behavior of the DRMAA
implementation in this regard should be clearly documented. In all cases, the list items MUST be valid input
for job submission or advance reservation through the DRMAA API, but MAY lead to later exceptions.

10.1.1 getAllReservations

This method returns the list of all advance reservations visible for the user running the DRMAA-based
application. In contrast to a ReservationSession::getReservations call, this method SHOULD also
return reservations that were created outside of DRMAA (e.g., through command-line tools) by this user.

The DRM system or the DRMAA implementation is at liberty to restrict the set of returned reservations
based on site or system policies, such as security settings or scheduler load restrictions. The returned list
MAY contain reservations that were created by other users. It MAY also contain reservations that are not
usable for the user.

drmaa-wg@ogf.org 49

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

This method SHALL raise an UnsupportedOperationException if advance reservation is not supported by
the implementation.

10.1.2 getAllJobs

This method returns the list of all DRMS jobs visible to the user running the DRMAA-based application. In
contrast to a JobSession::getJobs call, this method SHOULD also return jobs that were submitted outside
of DRMAA (e.g., through command-line tools) by this user. The returned list MAY also contain jobs that
were submitted by other users if the security policies of the DRM system allow such global visibility. The
DRM system or the DRMAA implementation is at liberty, however, to restrict the set of returned jobs based
on site or system policies, such as security settings or scheduler load restrictions.

Querying the DRM system for all jobs might result in returning an excessive number of Job objects. Impli-
cations to the library implementation are out of scope for this specification.

The method supports a filter argument for fetching only a subset of the job information available. Both
the return value semantics and the filter semantics SHOULD be similar to the ones described for the
JobSession::getJobs method (see Section 8.2).

Language bindings SHOULD NOT try to solve the scalability issues by replacing the sequence type of
the return value with some iterator-like solution. This approach would break the basic snapshot semantic
intended for this method.

10.1.3 getAllQueues

This method returns a list of queues available for job submission in the DRM system. The names from all
QueueInfo instances in this list SHOULD be a valid input for the JobTemplate::queueName attribute (see
Section 5.7.14). The result can be an empty list or might be incomplete, based on queue, host, or system
policies. It might also contain queues that are not accessible for the user at job submission time because of
queue configuration limits.

The names parameter supports restricting the result to QueueInfo instances that have one of the names
given in the argument. If the names parameter value is UNSET, all QueueInfo instances should be returned.

10.1.4 getAllMachines

This method returns the list of machines available in the DRM system as execution host. The returned list
might be empty or incomplete based on machine or system policies. The returned list might also contain
machines that are not accessible for the user, e.g., because of host configuration limits.

The names parameter supports restricting the result to MachineInfo instances that have one of the names
given in the argument. If the names parameter value is UNSET, all MachineInfo instances should be returned.

11 Complete DRMAA IDL Specification

The following text shows the complete IDL specification for the DRMAAv2 application programming inter-
face. The ordering of IDL constructs here has no normative meaning, but ensures an easier compilation with
a standard CORBA IDL compiler for syntactical correctness checks. This demands also some additional
forward declarations to resolve circular dependencies.

drmaa-wg@ogf.org 50

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

module DRMAA2 {

enum JobState {

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,

REQUEUED_HELD , DONE , FAILED };

enum OperatingSystem {

AIX , BSD , LINUX , HPUX , IRIX , MACOS , SUNOS , TRUE64 , UNIXWARE , WIN ,

WINNT , OTHER_OS };

enum CpuArchitecture {

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,

SPARC , SPARC64 , OTHER_CPU };

enum ResourceLimitType {

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };

enum JobTemplatePlaceholder {

HOME_DIRECTORY ,WORKING_DIRECTORY ,PARAMETRIC_INDEX };

enum DrmaaEvent {

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE

};

enum DrmaaCapability {

ADVANCE_RESERVATION , RESERVE_SLOTS , CALLBACK , BULK_JOBS_MAXPARALLEL ,

JT_EMAIL , JT_STAGING , JT_DEADLINE , JT_MAXSLOTS , JT_ACCOUNTINGID ,

RT_STARTNOW , RT_DURATION , RT_MACHINEOS , RT_MACHINEARCH

};

typedef sequence <string > OrderedStringList;

typedef sequence <string > StringList;

typedef sequence <Job > JobList;

typedef sequence <QueueInfo > QueueInfoList;

typedef sequence <MachineInfo > MachineInfoList;

typedef sequence <SlotInfo > OrderedSlotInfoList;

typedef sequence <Reservation > ReservationList;

typedef sequence < sequence <string ,2> > Dictionary;

typedef string AbsoluteTime;

typedef long long TimeAmount;

native ZERO_TIME;

native INFINITE_TIME;

native NOW;

struct JobInfo {

string jobId;

long exitStatus;

drmaa-wg@ogf.org 51

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

string terminatingSignal;

string annotation;

JobState jobState;

any jobSubState;

OrderedSlotInfoList allocatedMachines;

string submissionMachine;

string jobOwner;

long slots;

string queueName;

TimeAmount wallclockTime;

long cpuTime;

AbsoluteTime submissionTime;

AbsoluteTime dispatchTime;

AbsoluteTime finishTime;

};

struct ReservationInfo {

string reservationId;

string reservationName;

AbsoluteTime reservedStartTime;

AbsoluteTime reservedEndTime;

StringList usersACL;

long reservedSlots;

OrderedSlotInfoList reservedMachines;

};

struct JobTemplate {

string remoteCommand;

OrderedStringList args;

boolean submitAsHold;

boolean rerunnable;

Dictionary jobEnvironment;

string workingDirectory;

string jobCategory;

StringList email;

boolean emailOnStarted;

boolean emailOnTerminated;

string jobName;

string inputPath;

string outputPath;

string errorPath;

boolean joinFiles;

string reservationId;

string queueName;

long minSlots;

long maxSlots;

long priority;

OrderedStringList candidateMachines;

drmaa-wg@ogf.org 52

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

long minPhysMemory;

OperatingSystem machineOS;

CpuArchitecture machineArch;

AbsoluteTime startTime;

AbsoluteTime deadlineTime;

Dictionary stageInFiles;

Dictionary stageOutFiles;

Dictionary resourceLimits;

string accountingId;

};

struct ReservationTemplate {

string reservationName;

AbsoluteTime startTime;

AbsoluteTime endTime;

TimeAmount duration;

long minSlots;

long maxSlots;

string jobCategory;

StringList usersACL;

OrderedStringList candidateMachines;

long minPhysMemory;

OperatingSystem machineOS;

CpuArchitecture machineArch;

};

struct DrmaaNotification {

DrmaaEvent event;

string jobId;

string sessionName;

JobState jobState;

};

struct QueueInfo {

string name;

};

struct Version {

string major;

string minor;

};

struct MachineInfo {

string name;

boolean available;

long sockets;

long coresPerSocket;

long threadsPerCore;

drmaa-wg@ogf.org 53

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

double load;

long physMemory;

long virtMemory;

OperatingSystem machineOS;

Version machineOSVersion;

CpuArchitecture machineArch;

};

struct SlotInfo {

string machineName;

string slots;

};

exception DeniedByDrmsException {string message ;};

exception DrmCommunicationException {string message ;};

exception TryLaterException {string message ;};

exception SessionManagementException {string message ;};

exception TimeoutException {string message ;};

exception InternalException {string message ;};

exception InvalidArgumentException {string message ;};

exception InvalidSessionException {string message ;};

exception InvalidStateException {string message ;};

exception OutOfResourceException {string message ;};

exception UnsupportedAttributeException {string message ;};

exception UnsupportedOperationException {string message ;};

interface DrmaaReflective {

readonly attribute StringList jobTemplateImplSpec;

readonly attribute StringList jobInfoImplSpec;

readonly attribute StringList reservationTemplateImplSpec;

readonly attribute StringList reservationInfoImplSpec;

readonly attribute StringList queueInfoImplSpec;

readonly attribute StringList machineInfoImplSpec;

readonly attribute StringList notificationImplSpec;

string getInstanceValue(in any instance , in string name);

void setInstanceValue(in any instance , in string name , in string value);

string describeAttribute(in any instance , in string name);

};

interface DrmaaCallback {

void notify(in DrmaaNotification notification );

};

interface ReservationSession {

readonly attribute string contact;

readonly attribute string sessionName;

Reservation getReservation(in string reservationId );

drmaa-wg@ogf.org 54

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

Reservation requestReservation(in ReservationTemplate reservationTemplate );

ReservationList getReservations ();

};

interface Reservation {

readonly attribute string reservationId;

readonly attribute string sessionName;

readonly attribute ReservationTemplate reservationTemplate;

ReservationInfo getInfo ();

void terminate ();

};

interface JobArray {

readonly attribute string jobArrayId;

readonly attribute JobList jobs;

readonly attribute string sessionName;

readonly attribute JobTemplate jobTemplate;

void suspend ();

void resume ();

void hold ();

void release ();

void terminate ();

};

interface JobSession {

readonly attribute string contact;

readonly attribute string sessionName;

readonly attribute StringList jobCategories;

JobList getJobs(in JobInfo filter );

JobArray getJobArray(in string jobArrayId );

Job runJob(in JobTemplate jobTemplate );

JobArray runBulkJobs(

in JobTemplate jobTemplate ,

in long beginIndex ,

in long endIndex ,

in long step ,

in long maxParallel );

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout );

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout );

};

interface Job {

readonly attribute string jobId;

readonly attribute string sessionName;

readonly attribute JobTemplate jobTemplate;

void suspend ();

void resume ();

void hold ();

drmaa-wg@ogf.org 55

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

void release ();

void terminate ();

JobState getState(out any jobSubState );

JobInfo getInfo ();

Job waitStarted(in TimeAmount timeout );

Job waitTerminated(in TimeAmount timeout );

};

interface MonitoringSession {

ReservationList getAllReservations ();

JobList getAllJobs(in JobInfo filter );

QueueInfoList getAllQueues(in StringList names );

MachineInfoList getAllMachines(in StringList names );

};

interface SessionManager{

readonly attribute string drmsName;

readonly attribute Version drmsVersion;

readonly attribute string drmaaName;

readonly attribute Version drmaaVersion;

boolean supports(in DrmaaCapability capability );

JobSession createJobSession(in string sessionName ,

in string contact );

ReservationSession createReservationSession(in string sessionName ,

in string contact );

JobSession openJobSession(in string sessionName );

ReservationSession openReservationSession(in string sessionName );

MonitoringSession openMonitoringSession (in string contact );

void closeJobSession(in JobSession s);

void closeReservationSession(in ReservationSession s);

void closeMonitoringSession(in MonitoringSession s);

void destroyJobSession(in string sessionName );

void destroyReservationSession(in string sessionName );

StringList getJobSessionNames ();

StringList getReservationSessionNames ();

void registerEventNotification(in DrmaaCallback callback );

};

};

12 Security Considerations

The DRMAA API does not specifically assume the existence of a particular security infrastructure in the
DRM system. The scheduling scenario described herein presumes that security is handled at the point of
interaction with the DRM system. It is assumed that credentials owned by the application using the API
are in effect for the DRMAA implementation too, so that it acts as stakeholder for the application.

drmaa-wg@ogf.org 56

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

An authorized but malicious user could use a DRMAA implementation or a DRMAA-enabled application
to saturate a DRM system with a flood of requests. Unfortunately for the DRM system, this case is not
distinguishable from the case of an authorized good-natured user who has many jobs to be processed. For
temporary load defense, implementations SHOULD utilize the TryLaterException, if possible. In case of
permanent issues, the implementation SHOULD raise the DeniedByDrmsException.

DRMAA implementers SHOULD guard their product against buffer overflows that can be exploited through
DRMAA enabled interactive applications or portals. Implementations of the DRMAA API will most likely
require a network to coordinate subordinate DRM system requests. However, the API makes no assumptions
about the security posture provided by the networking environment. Therefore, application developers
SHOULD also consider the security implications of “on-the-wire” communications in this case.

For environments that allow remote or protocol based DRMAA clients, the implementation SHOULD offer
support for secure transport layers to prevent man in the middle attacks.

13 Contributors

The DRMAA working group is grateful to numerous colleagues for support and discussions on the topics
covered in this document, in particular (in alphabetical order, with apologies to anybody we have missed):

Guillaume Alleon, Ali Anjomshoaa, Ed Baskerville, Harald Böhme, Nadav Brandes, Matthieu Cargnelli,
Karl Czajkowski, Piotr Domagalski, Fritz Ferstl, Paul Foley, Nicholas Geib, Becky Gietzel, Alleon Guillaume,
Daniel S. Katz, Andreas Haas, Tim Harsch, Greg Hewgill, Rayson Ho, Eduardo Huedo, Dieter Kranzmüller,
Krzysztof Kurowski, Peter G. Lane, Miron Livny, Ignacio M. Llorente, Martin v. Löwis, Andre Merzky,
Thijs Metsch, Ruben S. Montero, Greg Newby, Steven Newhouse, Michael Primeaux, Greg Quinn, Hrabri L.
Rajic, Martin Sarachu, Jennifer Schopf, Enrico Sirola, Chris Smith, Ancor Gonzalez Sosa, Douglas Thain,
John Tollefsrud, Jose R. Valverde, and Peter Zhu.

Special thanks must go to Andre Merzky, who participated as SAGA working group representative in nu-
merous DRMAA events.

This specification was developed by the following core members of the DRMAA working group at the Open
Grid Forum:

Roger Brobst
Cadence Design Systems, Inc.
555 River Oaks Parkway
San Jose, CA 95134
United States
Email: rbrobst@cadence.com

Daniel Gruber
Univa GmbH
c/o Rüter und Partner
Prielmayerstr. 3 80335 München
Germany
Email: dgruber@univa.com

drmaa-wg@ogf.org 57

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

Mariusz Mamoński
Poznań Supercomputing and Networking Center
ul. Noskowskiego 10
61-704 Poznań
Poland
Email: mamonski@man.poznan.pl

Daniel Templeton
Cloudera Inc.
210 Portage Avenue
Palo Alto, CA 94306
United States
Email: daniel@cloudera.com

Peter Tröger (Corresponding Author)
Hasso-Plattner-Institute at University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam
Germany
Email: peter@troeger.eu

14 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that
it has made any effort to identify any such rights. Copies of claims of rights made available for publication
and any assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or users of this specification can
be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this recommendation.
Please address the information to the OGF Executive Director.

15 Disclaimer

This document and the information contained herein is provided on an “as-is” basis and the OGF disclaims
all warranties, express or implied, including but not limited to any warranty that the use of the information
herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular
purpose.

16 Full Copyright Notice

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved.

drmaa-wg@ogf.org 58

mailto:drmaa-wg@ogf.org


GWD-R-P August 2011

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to the OGF or
other organizations, except as needed for the purpose of developing Grid Recommendations in which case
the procedures for copyrights defined in the OGF Document process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors
or assignees.

17 References

[1] Sergio Andreozzi, Stephen Burke, Felix Ehm, Laurence Field, Gerson Galang, Balazs Konya, Maarten
Litmaath, Paul Millar, and JP Navarro. GLUE Specification v. 2.0 (GFD-R-P.147), mar 2009.

[2] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current
Practice), March 1997. URL http://tools.ietf.org/html/rfc2119.

[3] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith,
and M. Theimer. OGSA Basic Execution Service v1.0 (GFD-R.108), nov 2008.

[4] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Andre Merzky, John
Shalf, and Christopher Smith. A Simple API for Grid Applications (SAGA) Version 1.1 (GFD-R-P.90),
jan 2008.

[5] Object Management Group. Common Object Request Broker Architecture (CORBA) Specification,
Version 3.1. http://www.omg.org/spec/CORBA/3.1/Interfaces/PDF, jan 2008.

[6] The IEEE and The Open Group. The Open Group Base Specifications Issue 6 IEEE Std 1003.1.
http://www.opengroup.org/onlinepubs/000095399/utilities/ulimit.html.

[7] Distributed Management Task Force (DMTF) Inc. CIM System Model White Paper CIM Version 2.7,
jun 2003.

[8] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,
Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application
API Specification 1.0 (GFD-R.022), aug 2007.

[9] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,
Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application
API Specification 1.0 (GWD-R.133), jun 2008.

[10] Peter Tröger, Daniel Templeton, Roger Brobst, Andreas Haas, and Hrabri Rajic. Distributed Resource
Management Application API 1.0 - IDL Specification (GFD-R-P.130), apr 2008.

[11] Peter Tröger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski. Standardised job submission and
control in cluster and grid environments. International Journal of Grid and Utility Computing, 1:
134–145, dec 2009. doi: {http://dx.doi.org/10.1504/IJGUC.2009.022029}.

drmaa-wg@ogf.org 59

http://tools.ietf.org/html/rfc2119
mailto:drmaa-wg@ogf.org

	Introduction
	Basic concepts
	Slots and Queues
	Language Bindings
	Job Categories
	Multithreading

	Namespace
	Common Type Definitions
	Enumerations
	OperatingSystem enumeration
	CpuArchitecture enumeration
	ResourceLimitType enumeration
	JobTemplatePlaceholder enumeration
	DrmaaCapability

	Extensible Data Structures
	QueueInfo structure
	Version structure
	MachineInfo structure
	SlotInfo structure
	JobInfo structure
	ReservationInfo structure
	JobTemplate structure
	ReservationTemplate structure
	DrmaaReflective Interface

	Common Exceptions
	The DRMAA Session Concept
	SessionManager Interface

	Working with Jobs
	The DRMAA State Model
	JobSession Interface
	DrmaaCallback Interface
	Job Interface
	JobArray Interface
	The DRMAA_INDEX_VAR environment variable

	Working with Advance Reservation
	ReservationSession Interface
	Reservation Interface

	Monitoring the DRM System
	MonitoringSession Interface

	Complete DRMAA IDL Specification
	Security Considerations
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

