
GFD-I Peter Tröger, Blekinge Institute of Technology
DRMAA-WG Martin v. Löwis, Hasso-Plattner-Institute

Enrico Sirola, StatPro
October 2008

Distributed Resource Management Application API 1.0 – Python Language Binding

Status of This Document

This document provides information to the Grid community. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2008). All Rights Reserved.

Abstract

This document describes the representation of the DRMAA 1.0 API in the Python programming
language. It is based on the DRMAA 1.0 IDL recommendation (GFD-R-P.130), and maps the
DRMAA IDL interface definition to specific Python language constructs.

Contents

Abstract ... 1
1. Introduction .. 2
2. Python Language Mapping for DRMAA... 2
3. Rationale.. 6
4. Python 3.0 compatibility... 7
5. Security Considerations... 7
6. Intellectual Property Statement.. 7
7. Disclaimer .. 7
8. Full Copyright Notice ... 7
9. References .. 8

GFD-I

drmaa-wg@ogf.org 2

1. Introduction
This document describes the representation of the DRMAA 1.0 API in the Python programming
language. It is based on the DRMAA 1.0 IDL specification, which contains the detailed
functionality description for each method of the API. The rules for language bindings are
described in Section 2.2 of the DRMAA 1.0 IDL specification [GFD130].

2. Python Language Mapping for DRMAA
A Python module implementation can declare “DRMAA 1.0-compliance” if it realizes the API
signature described in the following sections, and the functional behavior as described in
[GFD130]. Additional module functionality beside the specified API is allowed, but must be clearly
identifiable (e.g. by a function name convention).
The following table provides the basic mapping overview for the DRMAA IDL constructs to the
Python programming language:

DRMAA 1.0 IDL specification DRMAA 1.0 Python binding

module definition Python module file named “drmaa.py”

interface definition class definition

enum definition with enumeration members Pre-defined attributes in module scope,
with values as stated below

string type str

long type int

long long type long

const definition Pre-defined class attributes

boolean type bool

[readonly] attribute definition class attributes

exception definition Class definition derived from Exception,
or mapping to in-build Python exception;
message parameter maps to args attribute

raises clause Not mapped

valuetype definition class definition with
__cmp__(self,other) method

StringList Python list of str objects

OrderedStringList Python list of str objects

TimeAmount long

Dictionary dict

PartialTimestamp str

GFD-I

drmaa-wg@ogf.org 3

The resulting Python module signature MUST be realized by all implementations. The pass
statements should be replaced by an according implementation. It is RECOMMENDED to add the
IDL specification description text as documentation to the DRMAA Python module functions.

"""This is drmaa.py, implementing the DRMAA Python language binding
 Visit www.drmaa.org for details"""

Job control action
SUSPEND, RESUME, HOLD, RELEASE, TERMINATE=\
'suspend', 'resume', 'hold', 'release', 'terminate'

Job state
UNDETERMINED, QUEUED_ACTIVE, SYSTEM_ON_HOLD, USER_ON_HOLD,\
USER_SYSTEM_ON_HOLD, RUNNING, SYSTEM_SUSPENDED,\
USER_SUSPENDED, USER_SYSTEM_SUSPENDED, DONE, FAILED=\
'undetermined', 'queued_active', 'system_on_hold', 'user_on_hold',\
'user_system_on_hold', 'running', 'system_suspended',\
'user_suspended', 'user_system_suspended', 'done', 'failed'

Job submission state
HOLD_STATE, ACTIVE_STATE='hold', 'active'

class FileTransferMode:
 transferInputStream=False
 transferOutputStream=False
 transferErrorStream=False
 def __cmp__(self,other):
 pass

class Version:
 major='1'
 minor='0'
 def __cmp__(self,other):
 pass

class AlreadyActiveSessionException(Exception):
 pass
class AuthorizationException(Exception):
 pass
class ConflictingAttributeValuesException(Exception):
 pass
class DefaultContactStringException(Exception):
 pass
class DeniedByDrmException(Exception):
 pass
class DrmCommunicationException(Exception):
 pass
class DrmsExitException(Exception):
 pass
class DrmsInitException(Exception):
 pass
class ExitTimeoutException(Exception):
 pass
class HoldInconsistentStateException(Exception):
 pass

GFD-I

drmaa-wg@ogf.org 4

class IllegalStateException(Exception):
 pass
class InternalException(Exception):
 pass
class InvalidAttributeFormatException(Exception):
 pass
class InvalidContactStringException(Exception):
 pass
class InvalidJobException(Exception):
 pass
class InvalidJobTemplateException(Exception):
 pass
class NoActiveSessionException(Exception):
 pass
class NoDefaultContactStringSelectedException(Exception):
 pass
class ReleaseInconsistentStateException(Exception):
 pass
class ResumeInconsistentStateException(Exception):
 pass
class SuspendInconsistentStateException(Exception):
 pass
class TryLaterException(Exception):
 pass
class UnsupportedAttributeException(Exception):
 pass
InvalidArgumentException=TypeError
InvalidAttributeValueException=ValueError
OutOfMemoryException=MemoryError

class JobInfo:
 def __init__(self):
 self.resourceUsage={}
 self.jobId=''
 self.hasExited=False
 self.exitStatus=0
 self.hasSignaled=False
 self.terminatingSignal=''
 self.hasCoreDump=False
 self.wasAborted=False

class JobTemplate:
 HOME_DIRECTORY='$drmaa_hd_ph$'
 WORKING_DIRECTORY='$drmaa_wd_ph$'
 PARAMETRIC_INDEX='$drmaa_incr_ph$'
 # contains list of strings
 attributeNames=[]
 def __init__(self):
 self.remoteCommand=''
 self.jobEnvironment={}
 self.workingDirectory=''
 self.jobCategory=''
 self.nativeSpecification=''
 self.blockEmail=False
 self.jobName=''

GFD-I

drmaa-wg@ogf.org 5

 self.inputPath=''
 self.outputPath=''
 self.errorPath=''
 self.joinFiles=False
 # contains list of strings
 self.args=[]
 # contains one of the job submission state values, or None
 self.jobSubmissionState=None
 # contains list of strings
 self.email=[]
 # [[[[CC]YY/]MM/]DD]hh:mm[:ss] [{-|+}UU:uu]
 self.startTime=''
 self.deadlineTime=''
 # contains FileTransferMode instance, or None
 self.transferFiles=None
 # in seconds
 self.hardWallclockTimeLimit=0
 self.softWallClockTimeLimit=0
 self.hardRunDurationLimit=0
 self.softRunDurationLimit=0

class Session:
 TIMEOUT_WAIT_FOREVER=-1
 TIMEOUT_NO_WAIT=0
 JOB_IDS_SESSION_ANY='DRMAA_JOB_IDS_SESSION_ANY'
 JOB_IDS_SESSION_ALL='DRMAA_JOB_IDS_SESSION_ALL'
 def __init__(self):
 self.contact=''
 self.drmsInfo=''
 self.drmaaImplementation=''
 version=Version()
 # no return value
 def init(self, contactString=''):
 pass
 # no return value
 def exit(self):
 pass
 # returns JobTemplate instance
 def createJobTemplate(self):
 pass
 # takes JobTemplate instance, no return value
 def deleteJobTemplate(self, jobTemplate):
 pass
 # takes JobTemplate instance, returns string
 def runJob(self, jobTemplate):
 pass
 # takes JobTemplate instance and num values, returns string list
 def runBulkJobs(self, jobTemplate, beginIndex, endIndex, step):
 pass
 # takes string and JobControlAction value, no return value
 def control(self, jobName, operation):
 pass
 # takes string list, num value and boolean, no return value
 def synchronize(self, jobList, timeout, dispose):
 pass

GFD-I

drmaa-wg@ogf.org 6

 # takes string and long, returns JobInfo instance
 def wait(self, jobName, timeout):
 pass
 # takes string, returns JobState instance
 def jobStatus(jobName):
 pass

3. Rationale
A Python module is a single file encapsulating Python definitions and statements [PyTut]. The file
name acts as parameter for the import statement, and therefore realizes the concept of a
module name in the IDL sense. A DRMAA Python module SHOULD NOT be declared as part of
a custom Python package, since this would lead to non-portable import statements in the
application.

Interfaces in the sense of Java or C# are not a dedicated language construct in Python [PEP245].
Instead a class encapsulates all DRMAA functions and attributes. The mapping does not imply an
implementation strategy for the class. Implementations could use ‘old-style’ and ‘new-style’
classes as well as inheritance, as long as the instantiation procedure is not changed for the
DRMAA-based application.

Enumerations are explicitly no part of the Python language [PEP354]. Since they are used as a
structuring concept for constants in the DRMAA IDL specification, they are mapped accordingly.

The IDL long type represents a 32-bit signed value and therefore maps to the Python int type,
which is promised to have at least 32-bit of precision [PyLib]. The Python long type is promised
to have unlimited precision, and therefore represents the 64-bit IDL long long and
TimeAmount type.

Python has no support for declaring constant attributes. The IDL const type is therefore mapped
to a pre-defined attribute in the according scope. Default values for the constant / enumeration /
value type attributes are partially adopted from the DRMAA 1.0 C language binding specification
[DRMAAC10].

Some of the DRMAA IDL exceptions are mapped to built-in Python exceptions, as suggested by
Section 5 of [GFD130]. Even though Python exception names usually end in “…Error” and not
in “…Exception”, the original names are kept. This makes the resulting source code more
familiar to experienced DRMAA developers, and eases the re-use of existing documentation. The
binding does not rely on a common exception base class (“DrmaaException”), since the
module scoping already ensures encapsulation.

Partial timestamp objects are mapped to native Python strings, without a separate type definition
in module scope. The in-built Python types for date and time representation are not usable here,
due to the partial time stamp feature of DRMAA 1.0 (see Section 6 of [GFD130]).

According to the discussion in Section 8.2 of [GFD130], this language binding maps
implementation-specific job template attributes to additional class data attributes [PyTut].

The runBulkJobs method in the IDL specification has three numerical parameters to express a
range of int values. In Python, this is usually expressed by a numerical list created by the
range() function. Since the increment value for a list generated by range()cannot be
determined in a reliable way, the language binding sticks with the original syntax.

Session.init() is intentionally NOT mapped to the Python __init__() function. The
DRMAA init() function explicitly attaches the application to the DRM system, which is not
necessary in all cases (e.g. reading the library version number).

GFD-I

drmaa-wg@ogf.org 7

The IDL valuetype is mapped to a Python class, even though a Python dict might look
appropriate, especially with the demand for comparability (see Section 2.2 of [GFD130]). The
main reason is the restriction to the defined set of attributes, while a dictionary type would allow
the DRMAA library implementation to support more keys.

4. Python 3.0 compatibility
Python 3 removes the in-built int type in favor of long, which changes the mapping described in
Section 2 accordingly. However, the DRMAA Python module API does not change for a Python 3
implementation.

5. Security Considerations
The language binding specification does not imply security demands upon an implementation.
According to the functional behavior, GFD.130 rules and best practices apply also here.

6. Intellectual Property Statement
The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

7. Disclaimer
This document and the information contained herein is provided on an “As Is” basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use
of the information herein will not infringe any rights or any implied warranties of merchantability or
fitness for a particular purpose.

8. Full Copyright Notice
Copyright (C) Open Grid Forum (2008). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the OGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
OGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

GFD-I

drmaa-wg@ogf.org 8

9. References
[DRMAAC10] Andreas Haas (Ed.). Distributed Resource Management Application API C

Bindings v1.0. February 2005
[GFD130] Peter Tröger, Daniel Templeton, Roger Brobst, Andreas Haas, Hrabri Rajic.

Distributed Resource Management Application API 1.0 - IDL Specification
(GFD.130). Proposed Grid Recommendation. Open Grid Forum, April 2008

[PEP245] Michel Pelletier. Python Interface Syntax (PEP 245). January 2001
[PEP354] Ben Finney. Enumerations in Python (PEP 354). December 2005
[PyLib] Python Software Foundation. The Python Standard Library - Built-in Types.

Release 2.6. October 2008
[PyTut] Guido van Rossum, Fred L. Drake. Python Tutorial. February 2008

