
GWD-R (Recommendation) W. Allcock, Editor
 Argonne National Laboratory
 April 2003
 Revised April 2003

allcock@mcs.anl.gov 1

GridFTP: Protocol Extensions to FTP for the Grid

Status of this Memo
This document is an Global Grid Forum Draft and is in full
conformance with all provisions of GFD-C.1.

Conventions used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", “MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC-2119 [5].

Copyright Notice
Copyright © Global Grid Forum (2003). All Rights Reserved.

Abstract
This document fully describes the GridFTP protocol. This protocol
builds on RFC 959 “FILE TRANSFER PROTOCOL (FTP)”, RFC 2228 “FTP
Security Extensions”, RFC 2389 “Feature negotiation mechanism for the
File Transfer Protocol”, the IETF draft draft-ietf-ftpext-mlst-16
“FTP Extensions”, which are incorporated by reference. Additionally,
the following extensions are defined:

SPAS Striped Passive This command is analogous to the PASV

command, but allows an array of
host/port connections to be returned.
This enables STRIPING, that is,
multiple network endpoints (multi-
homed hosts, or multiple hosts) to
participate in the transfer.

SPOR Striped Port This command is analogous to the PORT
command, but allows an array of
host/port connections to be sent.
This enables STRIPING, that is,
multiple network endpoints (multi-
homed hosts, or multiple hosts) to
participate in the transfer.

ERET Extended Retrieve This is analogous to the RETR
command, but it allows the data to be
manipulated (typically reduced in
size) before being transmitted.

ESTO Extended Store This is analogous to the STOR
command, but it allows the data to be
manipulated (typically reduced in
size) before being stored.

SBUF Set TCP Buffer
Size

Allows the TCP buffer size to be set
explicitly

GWD-R (Recommendation) W. Allcock, Editor
 Argonne National Laboratory
 April 2003
 Revised April 2003

allcock@mcs.anl.gov 2

ABUF Auto-negotiate TCP
Buffer Size

Allows the selection of an algorithm
to use to automatically determine the
appropriate TCP buffer size.

DCAU Data Channel
Authentication

RFC 2228 establishes a way to use the
gss on the control channel, but not
on the data channel. We have added
an extension to allow authentication
on the data channel as well to
prevent data from being hijacked.

Options have been added as shown below:

RETR: Options have been added that allow the specification of the
number of TCP streams to be used between a pair of network endpoints
(PARALLELISM) and the layout of data when written to multiple network
endpoints (STRIPING).

Appropriate feature responses (FEAT) have been defined so that a
client may determine if an implementation supports these commands.
Commands allowing a selection of algorithms, such as ERET, ESTO, and
ABUF, should also implement responses to the HELP command listing
available algorithms.

A new mode has been defined:

EBLOCK (Extended block): is key to enabling many of the features in
this specification. It sends data in blocks, where a block consists
of 8 bits of flags, a 64-bit length, a 64-bit offset, and then
"length" bytes of data. This enables out of order reception, which
is needed for PARALLEL and STRIPED data transfers.

This combination of features will allow secure, fast, efficient,
flexible, and extensible data transfer and data access.

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 3

Table of Contents
1. Authorship ..4
2. Introduction ..5

2.1. Background...5
2.2. Motivation...5
2.3. Terminology..7

3. The Extensions ..7
3.1. Summary..7
3.2. Commands...7

3.2.1. Striped Passive (SPAS) 7
3.2.2. Striped Data Port (SPOR) 8
3.2.3. Extended Retrieve (ERET) 9
3.2.4. Extended Store (ESTO) 10
3.2.5. Set Buffer Size (SBUF) 12
3.2.6. AutoNegotiate Buffer Size (ABUF) 12
3.2.7. Data Channel Authentication (DCAU) 13

3.3. Features..14
3.4. Extended Block Mode.......................................15

3.4.1. Extended Block Header 15
3.4.2. Extended Block EODC Header (code 64 set in
descriptor) .. 16
3.4.3. EOF Handling in Extended Block Mode 17

3.5. Options...17
3.5.1. Options to RETR 17

3.5.1.1. Layout Options 18
3.5.1.2. Parallelism Options 18

4. Declarative Specifications18
4.1. Minimum Implementation....................................18
4.2. Recommended Implementation................................19

5. Security Considerations20
6. Known Issues ...20
6.1. Unidirectional data transfer in EBLOCK mode:..............20
6.2. Order dependency between PASV/SPAS and STOR/RETR:.........21
6.3. Pipelining of commands & reuse of eblock data channels:...22
6.4. Support for disk resource management:.....................23

7. Appendix I: Restarting23
8. Appendix II: Performance Monitoring24
9. Appendix III: RFCs Considered During Development25
10. GGF Copyright Statement26
11. GGF Intellectual Property Statement27
12. References ...27

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 4

1. Authorship

This specification is the result of an effort on the part of many
people. They are listed below in alphabetical order. If there is an
omission, it is unintentional:

W. Allcock Argonne National
Laboratory

Editor, initial architecture
discussions and first draft of
protocol.

J. Bester Argonne National
Laboratory

Initial architecture discussion
and first draft of protocol, one
of the primary developers on the
Globus implementation

J. Bresnahan Argonne National
Laboratory

Initial architecture discussion
and first draft of protocol, one
of the primary developers on the
Globus implementation

S. Meder Argonne National
Laboratory

Initial architecture discussion
and first draft of protocol., one
of the primary developers on the
Globus implementation

P. Plaszczak Argonne National
Laboratory

Reviewer of subsequent drafts; co-
author of Globus Java client
implementation

S. Tuecke Argonne National
Laboratory

Chief Architect and first draft of
protocol.

Beyond the people specifically listed above, there were many people
who helped via discussions of various points and informal reviews of
some sections of the document. These things cannot get done without
input from many, many people and to all of you everywhere, who
contributed even a single comment, we thank you.

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 5

2. Introduction

2.1. Background

In Grid environments, access to distributed data is typically as
important as access to distributed computational resources.
Distributed scientific and engineering applications require:

* transfers of large amounts of data (terabytes or petabytes)

between storage systems, and
* access to large amounts of data (gigabytes or terabytes) by

many geographically distributed applications and users for
analysis, visualization, etc.

Unfortunately, the lack of published, standard protocols for transfer
and access of data in the Grid (outside of general purpose transfer
such as via FTP and HTTP, which are lacking several key features
required by many grid applications) has led to a fragmented Grid
storage community. Users who wish to access different storage systems
are forced to use multiple protocols and/or APIs, and it is difficult
to efficiently transfer data between these different storage systems.

We propose a common data transfer and access protocol called GridFTP
that provides secure, efficient data movement in Grid environments.
This protocol, which extends the standard FTP protocol, provides a
superset of the features offered by the various Grid storage systems
currently in use. We chose the FTP protocol because it is the most
commonly used protocol for bulk data transfer on the Internet, and of
the existing candidates (HTTP, DPSS, HPSS, SRB, etc.) from which to
start it comes closest to meeting the Grid’s needs. The GridFTP
protocol includes the following features:

* Grid Security Infrastructure (GSI) and Kerberos support
* Third-party control of data transfer
* Parallel data transfer (multiple TCP steams between 2 network

endpoints)
* Striped data transfer (1 or more TCP streams between m network

endpoints on the sending side and n network endpoints on the
receiving side)

* Partial file transfer
* Manual/Automatic control of TCP buffer/window sizes
* Support for reliable and restartable data transfer
* Integrated instrumentation

2.2. Motivation

There are already a number of storage systems in use by the Grid
community. These storage systems have been created in response to
specific needs for storing and accessing large datasets. They each

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 6

focus on a distinct set of requirements and provide distinct services
to their clients.

For example, some storage systems (DPSS, HPSS) focus on high-
performance access to data and utilize parallel data transfer streams
and/or striping across multiple servers to improve performance.
Other systems (DFS) focus on supporting high-volume usage and utilize
dataset replication and local caching to divide and balance server
load. The SRB system connects heterogeneous data collections and
provides a uniform client interface to these repositories, and also
provides metadata for use in identifying and locating data within the
storage system. Still other systems (HDF5) focus on the structure of
the data, and provide client support for accessing structured data
from a variety of underlying storage systems.

Unfortunately, most of these storage systems utilize incompatible and
often unpublished protocols for accessing data, and therefore require
the use of their own client libraries to access data. This
effectively partitions the datasets available to Grid applications.
Applications that require access to data stored in different storage
systems must either choose to only use a subset of storage systems,
or must use multiple methods to retrieve data from the various
storage systems.

One approach to breaking down partitions created by these mutually
incompatible storage system protocols is to build a layered client or
gateway which can present the user with one interface, but which
translates requests into the various storage system protocols and/or
client library calls. This approach is attractive to existing storage
system providers because it does not require them adopt support for a
new protocol. But it also has significant disadvantages, including:

* Performance: Costly translations are often required between the
layered client and storage system specific client libraries and
protocols. In addition, it can be challenging to efficiently
transfer a dataset from one storage system to another.

* Complexity: Building and maintaining a client or gateway that

supports numerous storage systems is considerable work. In
addition, staying up to date as each storage system
independently evolves is very difficult. This is further
exacerbated by the need to provide support for multiple client
languages, such as C/C++, Java, Perl, Python, shells, etc.

It would be mutually advantageous to both storage providers and users
to have a common level of interoperability between all of these
disparate systems: a common, but extensible, underlying data transfer
protocol. Storage providers would gain a broader user base, because
their data would be available to any client. Storage users would gain

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 7

access to a broader range of storage systems and data. In addition,
these benefits can be gained without the performance and complexity
problems of the layered client or gateway approach.

2.3. Terminology

* Parallel transfer: A data transfer between two network
endpoints that uses multiple TCP streams.

* Striped transfer: A data transfer between m networks endpoints
on the sending side and n network endpoints on the receiving
side. This could be multi-homed hosts, or multiple hosts (a
cluster).

* Data Node: In a striped data transfer, a data node is one of
the network endpoints returned in the SPAS command, or one of
the network endpoints sent in the SPOR command.

* DTP: The Data Transfer Process establishes and manages the data
connection. The DTP can be passive or active.

* PI: The Protocol Interpreter. The user and server sides of the
protocol have distinct roles implemented in a user-PI and a
server-PI.

* Features: A response from a server indicating it supports a set
of specified functionality. This is in accordance with RFC
2389.

* Options: A command to a server defining alternative behavior.
This is in accordance with RFC 2389.

3. The Extensions

3.1. Summary

This section describes the extensions to RFC 959. These extensions
consist of commands, options, features, and a new mode.

3.2. Commands

3.2.1. Striped Passive (SPAS)

This extension is used to establish a vector of data socket listeners
for each stripe of the data. To simplify interaction with the
parallel data transfer extensions, the SPAS MUST only be done on a
control connection when the data is to be stored onto the file space
served by that control connection. The SPAS command requests the FTP
server to "listen" on a data port (which is not the default data
port) and to wait for one or more data connections, rather than
initiating a connection upon receipt of a transfer command. The
response to this command includes a list of host and port addresses
the server is listening on. This command MUST always be used in
conjunction with the extended block mode.

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 8

Syntax
The syntax of the SPAS command is:

 spas = "SPAS" <CRLF>

Responses
The server-PI will respond to the SPAS command with a 229 reply
giving the list of host-port strings for the remote server-DTP or
user-DTP to connect to.

 spas-response = "229-Entering Striped Passive Mode" CRLF
 1*(<SP> host-port CRLF)
 229 End

The format of the host-port is as follows:
 h1,h2,h3,h4,p1,p2

Where this represents the concatenation of a 32 bit IP address and a
16 bit TCP port address. h1 through h4 represents the 4 fields in a
dotted IPV4 IP address transmitted as decimal numbers in character
string representation. h1 is the high order 8 bits of the IP
address. p1 is the high order 8 bits of the TCP port. To form the
IP address, it would be h1.h2.h3.h4. To determine the TCP port it
would be p1*256 + p2.

Where the command is correctly parsed, but the server-DTP cannot
process the SPAS request, it must return the same error responses as
the PASV command.

OPTS for SPAS
There are no options in this SPAS specification, and hence there is
no OPTS command defined.

3.2.2. Striped Data Port (SPOR)

This extension is to be used as a complement to the SPAS command to
implement striped third-party transfers. To simplify interaction with
the parallel data transfer extensions, the SPOR MUST only be done on
a control connection when the data is to be retrieved from the file
space served by that control connection for a third-party transfer.
This command MUST always be used in conjunction with the extended
block mode.

Syntax
The syntax of the SPOR command is:

SPOR 1*(<SP> <host-port>) <CRLF>

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 9

The host-port sequence in the command structure MUST match the host-
port replies to a SPAS command.

Responses
The server-PI will respond to the SPOR command with the same response
set as the PORT command described in the ftp specification.

OPTS for SPOR
There are no options in this SPOR specification, and hence there is
no OPTS command defined.

Implementation Note:
The FTP protocol defines multi-line responses, but not multi-line
commands. We have attempted to maintain this model. As a result,
the SPOR command could potentially represent a VERY long string for
the command. Implementations MUST be aware of this and prepared to
deal with it.

3.2.3. Extended Retrieve (ERET)

The extended retrieve extension is used to request that a retrieve be
done with additional processing on the server. This command is an
extensible way of providing server-side data reduction or other
modifications to the RETR command. This command is used in place of
OPTS to the RETR command to allow server side processing to be done
with a single round trip (one command sent to the server instead of
two) for latency-critical applications.

Syntax
The syntax of the ERET command is

ERET <SP> <module-name>="<module-params>" <SP> <resource-
name><CRLF>

module-name ::= <unique string identifying the module>
module=params ::= <module specific opaque string>

The module parameters are enclosed in double quotes. If the params
contain double quotes, they MUST be escaped with a back slash (\").
If a back slash is contained in the params it MUST be escaped with a
backslash (\\).

The resource name may be omitted, if the module does not require it.

The command should be parsed and a module selected based on matching
the module name token. This module is passed the module parameters
verbatim, which it must parse and then act on.

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 10

All implementations of this specification SHOULD implement the
following Partial File Transfer ERET module:

 ERET <SP> PFT="<offset>,<length>" <filename>

 offset::= string representation of a positive 64 bit integer
 length::= string representation of a positive 64 bit integer

Note that the offset specified here is the offset in the file and is
not related to the offset specified in the MODE E header, which is
the offset in the transfer over the wire.

Responses
The response to the ERET command should be per RFC 959 for the RETR
command. Additionally, if the module specified is not recognized, a
501 MUST be returned and the text SHOULD include a list of available
modules. If the module selected cannot parse the parameters a 502
MUST be returned and the text SHOULD identify proper syntax.

Options
There are no options in this ERET specification, and hence there is
no OPTS command defined.

Alternative Syntax for ERET
In a previous version of this specification, an alternative syntax
for the ERET command had been proposed. This syntax has been widely
implemented. A server implementing this protocol MAY choose to honor
the former syntax to assist in migration. However, any new modules
MUST be implemented using the syntax listed above.

The alternative format of the ERET command is

ERET <SP> <retrieve-mode> <SP> <filename>

retrieve-mode ::= P <SP> <offset> <SP> <size>
offset ::= 64 bit integer
size ::= 64 bit integer

Extended Retrieve Modes
Partial Retrieve Mode (P): A section of the file will be retrieved
from the data server. The section is defined by the starting offset
and extent size parameters.

3.2.4. Extended Store (ESTO)

The extended store extension is used to request that a store be done
with additional processing on the server.

Syntax

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 11

The syntax of the ESTO command is

ESTO <SP> <module-name>="<module-params>" <SP> <resource-
name><CRLF>

module-name ::= <unique string identifying the module>
module=params ::= <module specific opaque string>

The module parameters are enclosed in double quotes. If the params
contain double quotes, they MUST be escaped with a back slash (\").
If a back slash is contained in the params it MUST be escaped with a
backslash (\\).

The resource name MAY be omitted, if the module does not require it.

The command should be parsed and a module selected based on matching
the module name token. This module is passed the module parameters
verbatim, which it must parse and then act on.

All implementations of this specification SHOULD implement the
following Partial File Transfer ESTO module:

 ESTO <SP> PFT="<offset>,<length>" <filename>

 offset::= string representation of a positive 64 bit integer
 length::= string representation of a positive 64 bit integer

Note that the offset specified here is the offset in the file and is
not related to the offset specified in the MODE E header, which is
the offset in the transfer over the wire.

Responses
The response to the ESTO command should be per RFC 959 for the STOR
command. Additionally, if the module-name specified is not
recognized, a 501 MUST be returned and the text SHOULD include a list
of available modules. If the module selected cannot parse the
parameters a 502 MUST be returned and the text SHOULD identify proper
syntax.

Options
There are no options in this ESTO specification, and hence there is
no OPTS command defined.

Alternative Syntax for ESTO
In a previous version of this specification, an alternative syntax
for the ESTO command had been proposed. This syntax has been widely
implemented. A server implementing this protocol MAY choose to honor

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 12

the former syntax to assist in migration. However, any new modules
MUST be implemented using the syntax listed above.

The alternative format of the ESTO command is

ESTO <SP> <store-mode> <filename> <CRLF>
store-mode ::= A <SP> <offset>
offset ::= 64 bit Integer

Store Modes
Adjusted store (A): The data in the file is stored with offset added
to the file pointer before storing the blocks of the file. In
extended block mode, this value is added to the offset in the
extended block header, and may be a positive or negative value. In
block, compressed, or stream modes modes, the offset is added to the
implicit offset of 0 for the beginning of the data.

3.2.5. Set Buffer Size (SBUF)

This extension adds the capability of a client to set the TCP buffer
size for subsequent data connections to a value. This replaces the
server-specific commands SITE RBUFSIZE, SITE RETRBUFSIZE, SITE
RBUFSZ, SITE SBUFSIZE, SITE SBUFSZ, and SITE BUFSIZE

Syntax
The syntax of the SBUF command is:

sbuf = SBUF <SP> <buffer-size>

buffer-size ::= <number>

The buffer-size value is the TCP buffer size in bytes. The TCP window
size should be set accordingly by the server.

Response Codes
If the server-PI is able to set the buffer size state to the
requested buffer-size, then it will return a 200. Note: Even if the
SBUF is accepted by the server, an error may occur later when the
data connections are actually created.

3.2.6. AutoNegotiate Buffer Size (ABUF)

This extension allows the invocation of an algorithm to determine and
set the TCP buffer size. No specific algorithms are defined here,
but support is provided in the protocol for the arbitrary addition of
algorithms. Any algorithm added should have an associated FEAT
response defined listing it as an available module, and an associated
HELP response for each module describing parameter syntax.

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 13

Syntax
The syntax of the ABUF command is

ABUF <SP> <module-name>="<module-params>"<CRLF>

module-name ::= <unique string identifying the module>
module=params ::= <module specific opaque string>

The module parameters are enclosed in double quotes. If the params
contain double quotes, they MUST be escaped with a back slash (\").
If a back slash is contained in the params it MUST be escaped with a
backslash (\\).

The command should be parsed and a module selected based on matching
the module name token. This module is passed the module parameters
verbatim, which it must parse and then act on.

Response Codes
If the server-PI is able to set the buffer size state to the
calculated buffer-size, then it will return a 200 and SHOULD include
the buffer size set in the text. If the algorithm is not identified,
a 501 MUST be returned and the text SHOULD include a list of
available algorithms. If the algorithm selected can not parse the
parameters a 502 MUST be returned and the text SHOULD identify proper
syntax. Note: Even if the server accepts the ABUF, an error may
occur later when the data connections are actually created.

3.2.7. Data Channel Authentication (DCAU)

This extension provides a method for specifying the type of
authentication to be performed on FTP data channels. This extension
may only be used when the control connection was authenticated using
RFC 2228 Security extensions.

Syntax

The format of the DCAU command is

DCAU <SP> <authentication-mode> <CRLF>

authentication-mode ::= <no-authentication>
 | <authenticate-with-self>
 | <authenticate-with-subject>

no-authentication ::= N
authenticate-with-self ::= A
authenticate-with-subject ::= S <subject-name>

subject-name ::= string

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 14

Authentication Modes
* No authentication (N)

No authentication handshake will be done upon data connection
establishment.

* Self authentication (A)
A security-protocol specific authentication will be used on the
data channel. The identity of the remote data connection will
be the same as the identity of the user which authenticated to
the control connection.

* Subject-name authentication (S)
A security-protocol specific authentication will be used on the
data channel. The identity of the remote data connection MUST
match the supplied subject-name string.

The default data channel authentication mode is A for FTP sessions
which are RFC 2228 authenticated. If the security handshake fails,
the server must return the error response 432 (Data channel
authentication failed).

3.3. Features

RFC 2389 provides for the addition of the FEAT and OPTS commands to
allow for the negotiation of feature sets. The following new feature
names are to be included in the FTP server's response to FEAT if it
implements the following sets of functionality

* PARALLEL: The server supports MODE E, and can accept and

initiate multiple TCP connections for a transfer
* MODE-E-RESTART: The server supports MODE E, the restart

markers, and restart semantics as described in this document.
* MODE-E-PERF: The server supports MODE E and the performance

markers as described in this document.
* STRIPING: The server supports the SPOR and SPAS commands, the

RETR options, and extended block mode as described in this
document.

* ESTO: The server implements the ESTO command as described in
this document.

* ERET: The server implements the ERET command as described in
this document.

* SBUF: The server implements the SBUF command as described in
this document.

* ABUF: The server implements the ABUF command as described in
this document.

* DCAU: The server implements the DCAU command as described in
this document, including the requirement that data channels are
authenticated by default, if RFC 2228 authentication is used to
establish the control channel.

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 15

Features that allow module selection, such as ESTO, ERET, and ABUF
SHOULD implement HELP responses that list the available modules.

3.4. Extended Block Mode

The striped and parallel data transfer methods described above
requires an extended transfer mode to support out-of-sequence data
delivery, and partial data transmission per data connection. The
extended block mode described here extends the block mode header to
provide support for these as well as large blocks, and end-of-data
synchronization. Clients indicate that they want to use extended
block mode by sending the command:

MODE <SP> E <CRLF>

on the control channel before a transfer command is sent. The
structure of the extended block header is:

3.4.1. Extended Block Header

+----------------+-------------------+-------------------+
| Descriptor | Byte Count | Offset Count |
| 8 bits | 64 bits | 64 bits |
+----------------+-------------------+-------------------+

The descriptor codes are indicated by bit flags in the descriptor
byte. Six codes have been assigned, where each code number is the
decimal value of the corresponding bit in the byte. See section 2.4.2
for further information on the use of these bits.

 Code Meaning

 128 This block is End Of Record (EOR) (Legacy)
 64 This block contains the End of Data Count (EODC), which

is the number of End of Data (EOD) markers (see bit 8
below) that MUST be received

 32 Suspected errors in data block
 16 Data block is a restart marker (Legacy)
 8 This block is the End Of Data (EOD) marker for this link
 4 Sender will close the data connection

Note that while this is modeled after the BLOCK mode descriptor,
BLOCK mode and Extended BLOCK mode are completely independent modes
(data channel protocols) and have no relationship to each other.
With this encoding, more than one descriptor-coded condition may
exist for a particular block. For instance, 64 (EODC), 8 (EOD), and 4
(CLOSE) could all be set simultaneously. However, there are also
nonsensical encodings, for instance code 16 does not make sense with
128, since a restart marker can't be the end of a record. We leave

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 16

deciding what are acceptable combinations to the implementer. The
implementation must generate an error if a flag is set that it does
not know how to interpret. Some additional protocol is added to the
extended block mode data channels, to properly handle end-of-file
detection in the presence of an unknown number of data streams.

* When no more data is to be sent on a given data channel, then
the sender will mark the last block, or send a zero-length
block after the last block with the EOD bit (8) set in the
extended block header on that data channel.

* After receiving an EOD the data connection can be cached for
use in a subsequent transfer. To signify that the data
connection will be closed the sender sets the close bit (4) in
the header on the last message sent.

* The sender communicates end of file by sending an EOF message
to all servers receiving data. The EOF message format is
described below.

An example will help to illustrate how this works. A sender intends
to send multiple files to the same receiver and wishes to avoid the
overhead of re-establishing the connections. The receiver listens on
its port, and the sender opens 3 data connections, A, B, and C. For
the first transfer, all three data channels are used, an EOD is sent
on each, and one EODC of 3 is sent. No CLOSE is sent, so all three
channels may be kept open. Either end could also choose to
arbitrarily close them, but for our example they are cached (held
open). On the second transfer, only channels A and B are used. An
EODC of 2 is sent (on either channel, but only one may be sent). An
EOD is sent on A and B. A CLOSE must be sent on channel B and the
connection closed. The reason for this is to avoid a race condition.
Suppose that we just sent the EOD on A and B, and the EODC of 2, but
no close and B is heavily congested and the EOD gets dropped several
times. Now you start a new transfer that uses A and C. You send
very little data and send EOD on C, which arrives before B. The
CLOSE prevents this race condition.

3.4.2. Extended Block EODC Header (code 64 set in descriptor)

 +----------------+-------/--------+------/---------------+
 | Descriptor | unused | EOD count expected |
 | 8 bits | 64 bits | 64 bits |
 +----------------+-------/--------+------/---------------+

EOF Descriptor. The EOF header descriptor has the same definition
as the regular data message header described above.

EOD Count Expected. This 64 bit field represents the total number
of data connections that will be established with the server
receiving the file. This number is used by the receiver to

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 17

determine it has received all of the data. When the number of EOD
messages received equals the number represented by the "EOD Count
Expected" field the receiver has hit end of file.

Simply waiting for EOD on all open data connections is not
sufficient. It is possible that the receiver reads an EOD message
on all of its open data connects while an additional data
connection is in flight. If the receiver were to assume it reached
end of file it would fail to receive the data on the in flight
connection. Note that in a multi-node transfer each receiving
node MUST receive EXACTLY one EODC count reply on an arbitrarily
selected data channel. How the EODC count is consolidated is left
as an implementation detail.

3.4.3. EOF Handling in Extended Block Mode

If you are in either striped or parallel mode, you will get
exactly one EOF on each SPAS-specified ports (stripes). Hosts in
extended block mode must be prepared to accept an arbitrary number
of connections on each SPOR port before the EOF block is sent.

3.5. Options

3.5.1. Options to RETR

The options described in this section provide a means to convey
striping and transfer parallelism information to the server-DTP.
For the RETR command, the Client-FTP may specify a parallelism and
striping mode it wishes the server-DTP to use. These options are
only used by the server-DTP if the retrieve operation is done in
extended block mode. These options are implemented as RFC 2389
extensions.

The format of the RETR OPTS is specified by:

 retr-opts = "OPTS" <SP> "RETR" [<SP> option-list] CRLF
 option-list = [layout-opts ";"] [parallel-opts ";"]
 layout-opts = "StripeLayout=Partitioned"
 | "StripeLayout=Blocked;BlockSize=" <block-size>
 parallel-opts = "Parallelism=" <starting-parallelism> ","
 <minimum-parallelism> ","
 <maximum-parallelism>

 block-size ::= <number>
 starting-parallelism ::= <number>
 minimum-parallelism ::= <number>
 maximum-parallelism ::= <number>

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 18

3.5.1.1. Layout Options

The layout option is used by the source data node to send sections of
the data file to the appropriate destination stripe. The various
StripeLayout parameters are to be implemented as follows:

Partitioned
A partitioned data layout is one where the data is distributed evenly
on the destination data nodes. Only one contiguous section of data
is stored on each data node. A data node is defined here as a single
host-port mentioned in the SPOR command

Blocked
A blocked data layout is one where the data is distributed in round-
robin fashion over the destination data nodes. The data distribution
is ordered by the order of the host-port specifications in the SPOR
command. The block-size defines the size of blocks to be distributed.

3.5.1.2. Parallelism Options

The parallelism option is used by the source data node to control how
many parallel data connections may be established to each destination
data node. This extension option provides for both a fixed level of
parallelism, and for adapting the parallelism to the host/network
connection, within a range. If the starting-parallelism option is
set, then the server-DTP will make starting-parallelism connections
to each destination data node. If the minimum-parallelism option is
set, then the server may reduce the number of parallel connections
per destination data node to this value. If the maximum-parallelism
option is set, then the server may increase the number of parallel
connections to per destination data node to at most this value.

Responses
The responses to the OPT command are defined in RFC 2389. A 200
reply is returned for normal successful commands. A 501 is returned
for permanent failures, a 451 for transient failures or failures
based on configuration. If the command is not recognized a 500 or
502 will result. The server COULD choose to respond with a 501 if
the requested number of sockets was too large.

4. Declarative Specifications

4.1. Minimum Implementation

The extensions described in this document are designed to provide a
data access and transport mechanism that is secure, fast, reliable,
flexible, and extensible. However, not all applications require all

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 19

these features and it is desirable that they still be able to be
“part of the grid”. This means, that in fact, none of the extensions
described here are required for the minimum implementation. Our
recommendation for a minimum implementation is as recommended in RFC
959 with the addition of the RFC 2228 Security extensions. Clear
text passwords simply are no longer acceptable. We have listed the
details below:

Per RFC 959:

TYPE: ASCII Non-print
MODE: Stream
STRUCTURE: File, Record
COMMANDS: USER, QUIT, PORT, TYPE, MODE, STRU,
COMMANDS: RETR, STOR, NOOP (these commands with default values

only)

The default values for transfer parameters are:

TYPE: ASCII Non-print
MODE: Stream
STRU: File

All hosts must accept the above as the standard defaults.

Per RFC 2228:
COMMANDS:AUTH , ADAT, MIC, CONF, ENC

4.2. Recommended Implementation

In order to gain all the benefits and to fully take advantage of the
grid, we recommend the following for a full featured implementation.
Note that there are some commands, modes, features, etc, that are
being deprecated as they are seldom implemented and in some cases
simply no longer apply:

RFC 959, FILE TRANSFER PROTOCOL (FTP), J. Postel, R. Reynolds
(October 1985)
Commands used by GridFTP

USER PASS ACCT CWD CDUP QUIT
REIN PORT PASV TYPE MODE RETR
STOR STOU APPE ALLO REST RNFR
RNTO ABOR DELE RMD MKD PWD
LIST NLST SITE SYST STAT HELP
NOOP

Features used by GridFTP

Type: ASCII, Image
Mode: Stream, EBlock
Structure: File structure

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 20

RFC 2228, FTP Security Extensions, Horowitz, M. and S. Lunt (October
1997)
Commands used by GridFTP

AUTH
ADAT
MIC
CONF
ENC

Features used by GridFTP
GSSAPI authentication

RFC 2389, Feature negotiation mechanism for the File Transfer
Protocol, P. Hethmon , R. Elz (August 1998)
Commands used by GridFTP

FEAT
OPTS

FTP Extensions, R. Elz, P. Hethmon (September 2000)
Commands used by GridFTP

SIZE
Features used by GridFTP

Restart of a stream mode transfer

5. Security Considerations

Security is one of the key considerations for the grid and what makes
FTP as defined by RFC 959 unacceptable for use today. GridFTP was
designed with security in mind from the start and was, in fact, the
driving force that started this effort. While we will retain
anonymous FTP, and support for the USER and PASS commands, we
strongly discourage their use, particularly PASS. We incorporate the
GSS API extensions defined in RFC 2228, with both GSI and Kerberos
bindings.

6. Known Issues

6.1. Unidirectional data transfer in EBLOCK mode:

Currently if you are in MODE E (EBLOCK) mode, PASV must be paired
with STOR, and PORT must be paired with RETR. In other words, the
direction of the connection on the data channels must go from the
sending (RETR) to the receiving (STOR) side. While this works, it
raises the following issues:

1) The current FTP protocol does not have this restriction.

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 21

2) Firewalls: It can help you traverse some firewalls more easily
to be able to set the direction to connect out from behind the
firewall.

3) A mixture of partial gets/puts currently requires two control
channel connections. This is less than ideal.

The restriction is necessary because in the reverse situation end of
file cannot be reliably determined, allowing for the possibility of
lost data. As discussed above, the sender has to send an EOD on each
connection and an EOD count. If the receiver were making
connections, it would be possible for n connections to have been
formed, all data sent on those n connections, the EOD's sent on each
connection and the EODC with a count of n sent, while the receiver
has another connection in flight. No EOD would be received on this
connection and thus EOF would not be properly determined.

At first blush, this problem seems quite simple to solve. However,
when arbitrary number and timing of streams, multi-node transfers,
cached data connections, data layout on the receiving side, and the
fact that the listener does not know what host or how many are making
connections to its port are taken into account, it is quite
difficult.

6.2. Order dependency between PASV/SPAS and STOR/RETR:

In simple terms, the sequence of events in a GET or PUT operation as
defined by RFC 959, is as follows:

1. One end of the transfer listens on a port.
2. The other end forms a connection to that port
3. The other end is told to STOR (write) a file. Again, the

filename is an argument to the STOR command.
4. One end is told to RETR (read) a file, where the filename is an

argument to RETR

This sequence of events imposes an unnecessary, and in some
instances, significant limitation. This limitation is that the
connection must be established before the file to be transferred has
been identified. This prevents any decision about the connection
being made based on the filename. The ability to make decisions
based on the filename allow will large installations to do load
balancing and internal relocation of files transparently. If a front
end server is presented with a URL, prior to the data connection
being formed, then the front end could make a decision about the
optimal host to service the data connection. For instance:

The host specified in the URL may be down for maintenance and its
files are being hosted elsewhere. The front end could simply could
direct the new host to form the data connection.

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 22

A heavily accessed file may be present on multiple backend servers
and the front end can choose which one to service this request based
on current load.

Several solutions to this problem have been proposed:

A new response should be defined for the PASV command: This response
would a “delayed IP/Port”. This response would indicate that the
IP/Port information would be returned as the first intermediate
response in the STOR/RETR command. Then when the STOR/RETR command
is received, a decision can be made about which host should form the
data connection based on the filename/URL provided. With this
information now available, connections can be established and normal
STOR/RETR behavior can follow. This functionality would be turned on
and off via some mechanism, perhaps an OPT or SITE command.

Redefine the state machine to allow PORT/PASV and STOR/RETR in any
pairs, but unordered: Currently, the state machine is such that the
STOR/RETR command knows that the data connection MUST already exist
and therefore it can immediately begin transmission. If instead the
state machine were redefined so that a state of “OK TO BEGIN
TRANSMISSION” were defined and that state was reached by receiving
one each of PORT/PASV and STOR/RETR, then there would no longer be an
ordering restriction.

Introduce a new command called the Pre Transfer (PRET) command (see
further description below in the section on new commands under
consideration). This command would allow arbitrary state information
to be set for a single transfer before any other command were issued.
This option has the advantage that state information other than the
filename could be provided. File size is one option that comes to
mind. However, this system allows information not anticipated today
to be made available. The disadvantage is that this requires
additional state and complicates the RFC 959 state machine. In the
absence of a PRET command, the standard RFC 959 state machine is
used.

6.3. Pipelining of commands & reuse of eblock data channels:

In order to get maximal efficiency when issuing multiple
RETR/ERET/STOR/ESTO commands, in addition to reusing the data
channels, you would also want to pipeline the issuing of commands.
That is, for example, while the data for one RETR is still being sent
by the server, the client could issue another RETR command. This
would, in theory, allow the server to keep the data channel pipes
full. As soon as it finishes sending the data for the first RETR, it
can immediately start sending the data for the next RETR, at the same
time as it sends the control channel response to the first RETR.

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 23

The issue here is making sure that the receiving end can figure out
where the data for the first RETR ends, and the second begins. The
obvious complication is when there are multiple data channels.

6.4. Support for disk resource management:

Is there a need for protocol support that addresses disk resource
management needs such as verifying and reserving available disk
space, advanced reservations, requesting that a file be maintained on
disk for a minimum specified period of time (pinning), etc? The
current belief is that this is not necessary. A higher level service
will interact with disk resource management services (if any) and get
space allocated, files pinned or staged, etc, and then direct the
transfer service (GridFTP) to move the files once this is all in
place.

7. Appendix I: Restarting

In general, opaque restart markers passed via the block header should
not be used in extended block mode. This capability is provided for
back compatibility with BLOCK mode. Instead, the destination server
should send extended data marker responses over the control
connection, in the following form:

 extended-mark-response = "111" <SP> "Range Marker" <SP>
 <byte-ranges-list>

 byte-ranges-list = <byte-range> [*("," <byte-range>)]
 byte-range = <start-offset> "-" <end-offset>

 start-offset ::= <number>
 end-offset ::= <number>

The byte ranges in the marker are an incremental set of byte ranges
which have been stored to disk by the data server. The complete
restart marker is a concatenation of all byte ranges received by the
client in 111 responses.

The client MAY combine adjacent ranges received over several range
responses into any number of ranges when sending the REST command to
the server to restart a transfer.

For example, the client, on receiving the responses:

111 Range Marker 0-29
111 Range Marker 30-89

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 24

may send, equivalently,

REST 0-29,30-89
REST 0-89
REST 30-59,0-29,60-89

to restart the transfer after those 90 bytes have been received.
The server MAY indicate that a given range of data has been received
in multiple subsequent range markers. The client MUST be able to
handle this. For example:

111 Range Marker 30-59
111 Range Marker 0-89

is equivalent to

111 Range Marker 30-59
111 Range Marker 0-29,60-89

Similarly, the client, if it is doing no processing of the restart
markers, MAY send redundant information in a restart.

8. Appendix II: Performance Monitoring

In order to monitor the performance of extended block mode transfer,
an additional preliminary reply MAY be transmitted over the control
channel. This reply is of the form:

 extended-perf-response =
 "112-Perf Marker" CRLF
 <SP> "Timestamp:" <SP> <timestamp> CRLF
 <SP> "Stripe Index:" <SP> <stripe-index> CRLF
 <SP> "Stripe Bytes Transferred:" <SP> <byte count> CRLF
 <SP> "Total Stripe Count:" <SP> <stripe count> CRLF
 "112 End" CRLF

 timestamp = <number> ["." <digit>]
 stripe-index = <number>
 byte count = <number>
 stripe count = <number>

All perf-line facts represent an instantaneous state of the transfer
at the given timestamp. The meaning of the facts are:

Timestamp - The time at which the server computed the performance
information. This is in seconds since the epoch ((00:00:00 UTC,
January 1, 1970).

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 25

Stripe Index - the index (range of 0 to n where n is the number of
stripes on the STOR side of the transfer) that this marker pertains
to.

Stripe Bytes Transferred - The number of bytes which have been
received on this stripe.

Total Stripe Count - The total number of stripes (network endpoint
pairs) participating in this transfer.

A transfer start time can be specified by a perf marker with 'Stripe
Bytes Transferred' set to zero. Only the first marker per stripe can
be used to specify the start time of that stripe. Any subsequent
markers with 'Stripe Bytes Transferred' set to zero simply indicates
no data transfer over the interval.

A server should send a 'start' marker for each stripe. A server
should also send a final perf marker for each stripe. This is a
marker with 'Stripe Bytes Transferred' set to the total transfer size
for that stripe.

9. Appendix III: RFCs Considered During Development

The RFCs listed below were considered for inclusion of their
functionality in the GridFTP protocol. There are other RFCs that are
related in some way to the FTP protocol, but were either purely
informational in nature, or were a form of File Transfer protocol,
but completely different from the protocol defined in RFC 959. We
chose the set of features that best fit the needs of Grid
applications, and then added our own extensions as necessary.

RFC0959 File Transfer Protocol Oct-85
Comments: The primary basis of the GridFTP protocol. We chose the
common features (STOR, RETR, PORT, PASV), and features that were
defined, but not often implemented (third party transfer).

RFC2773 Encryption using KEA and SKIPJACK Feb-00
Comments: We chose to use existing encryption within Globus at the
SSL level.

RFC2640 Internationalization of FTP Jul-99
Comments: Defines how to use UniCode characters in FTP. This is a
good idea and is under consideration for future addition, but right
now there is no definite requirement.

RFC2428 FTP Extensions for IPv6 and NATs Sep-98
Comments: Defines new commands (EPRT and EPSV) to allow for arbitrary
addressing schemes. IPV4 and IPV6 are defined, but addition of other

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 26

schemes is straight forward. This is a good idea and is under
consideration for future addition, but right now there is no definite
requirement. If implemented, it is likely that we would map the
other commands such as PORT, PASV, SPAS, and SPOR to EPRT and EPSV
transparently.

RFC2389 Feature negotiation mechanism for FTP Aug-98
Comments: The FEAT and OPTS extensions as defined in the RFC are
incorporated in the GridFTP protocol.

RFC2228 FTP Security Extensions Oct-97
Comments: The AUTH, ADATA, PROT, PBSZ, CCC, MIC, CONF, ENC, and 6yz
replies as defined in this RFC are incorporated in the GridFTP
protocol.

RFC1639 FTP Operation Over Big Address Records (FOOBAR) Jun-94

RFC1545 FTP Operation Over Big Address Records (FOOBAR) Nov-93
Comments: It was felt that the method described in RFC 2428 was a
better way of dealing with non-IPV4 addressing schemes.

RFC1068 Background File Transfer Program (BFTP) Aug-88
Comments: We consider a reliable file transfer service based on the
GridFTP protocol to be a key service for the Grid. Material in this
RFC is one source of input for design of such a service.

10. GGF Copyright Statement

"Copyright (C) Global Grid Forum (2003). All Rights Reserved.

This document and translations of it may be copied and
furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be
prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such
copies and derivative works. However, this document itself may
not be modified in any way, such as by removing the copyright
notice or references to the GGF or other organizations, except
as needed for the purpose of developing Grid Recommendations
in which case the procedures for copyrights defined in the GGF
Document process must be followed, or as required to translate
it into languages other than English.

The limited permissions granted above are perpetual and will
not be revoked by the GGF or its successors or assigns.

GWD-R (Recommendation) April 2003

allcock@mcs.anl.gov 27

This document and the information contained herein is provided
on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

11. GGF Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described
in this document or the extent to which any license under such
rights might or might not be available; neither does it
represent that it has made any effort to identify any such
rights. Copies of claims of rights made available for
publication and any assurances of licenses to be made available,
or the result of an attempt made to obtain a general license or
permission for the use of such proprietary rights by
implementers or users of this specification can be obtained from
the GGF Secretariat.

The GGF invites any interested party to bring to its attention
any copyrights, patents or patent applications, or other
proprietary rights which may cover technology that may be
required to practice this recommendation. Please address the
information to the GGF Executive Director.

12. References

[1] Postel, J. and Reynolds, J., " FILE TRANSFER PROTOCOL (FTP)",

STD 9, RFC 959, October 1985.

[2] Hethmon, P. and Elz, R., " Feature negotiation mechanism for the

File Transfer Protocol", RFC 2389, August 1998.

[3] Horowitz, M. and Lunt, S., " FTP Security Extensions", RFC 2228,

October 1997.

[4] Elz, R. and Hethom, P., " FTP Extensions", IETF Draft, September

2000.

