
GWD-E Ronny Fehling, Oracle Corporation
INFOD-WG Steve Fisher, Rutherford Appleton Laboratory

Dieter Gawlick, Oracle Corporation
Raghul Gunasekaran, University of Tennessee

Mallikarjun Shankar, Oak Ridge National Laboratory
Aravind Yalamanchi, Oracle Corporation

August 2009

INFOD 1.0 Implementation – Experience Report

Status of This Document

This document provides information to the Grid community on the implementation experience
of the INFOD specification GFD.110. It does not define any standards or technical recommendations.
Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2009). All Rights Reserved.

Abstract

This document describes experience in building an INFOD system from the specification
document. It also includes changes that should be included in a new version of an INFOD specification.

Table of Contents

1. Introduction .. 3

2. Implementation Overview .. 3

2.1 Vocabularies.. 3

2.2 Constraints .. 3

2.3 Mutual Filtering... 4

3. Implementation Details .. 5

3.1 Registry Structure ... 6

3.2 Registry Operation .. 8

3.3 Mutual Filtering...10

3.4 Notification Messages...12

3.5 Garbage Collection..12

3.6 Client API...13

4. Changes to the INFOD specification..14

5. Conclusion...15

6. Author Contact Information ...16

7. Intellectual Property Statement ...16

2

8. Disclaimer..17

9. Full Copyright Notice...17

Appendix A: Errata ..18

3

1. Introduction

The document describes experience of the authors building an INFOD system according to the GFD.110
specification and presents information that would help prototyping the INFOD model. Our experience in
implementing the INFOD specification has helped the INFOD group gain a better understanding of the
model. Therefore this document also identifies changes that should be included in any revision of the
specification. The document also addresses certain insights of the INFOD approach gained from our
experience, and identifies key details that need to be considered in developing an INFOD system and
building applications.

2. Implementation Overview

The INFOD registry was implemented on Oracle database 10g, which offers good XML support.
Resources in the registry are stored as XML documents which are parsed and stored in a relational table
as XMLtype and varchar datatypes.

2.1 Vocabularies

As described in the specification document, the model supports two vocabulary definitions. Property
Vocabulary for describing user entities in the registry, and Data Vocabulary for describing data sources,
events of interest and notification messages. The choice of vocabulary attributes and what constitutes a
property or a data vocabulary depends on the use case on hand and the constraints that would be
defined on the vocabulary attributes. Choosing a property vocabulary attribute that changes frequently
would result in the INFOD registry recursively performing the mutual filtering operation with no changes
to the entities being matched. From our experience, attributes should be classified as dynamic,
transient, or static. Dynamic meaning the attribute changes frequently such as the latitude and
longitude of a moving vehicle. A transient attribute changes over a certain time or in periodic intervals.
Static attributes are ones that do not change or change only occasionally. It is best if dynamic attributes
are always a part of the data vocabulary, while static attributes could be either in the property or data
vocabulary depending on their function of either describing an entity or describing an event of interest.
The handling of transient attributes depends upon the information dissemination needs and the
capability of the INFOD registry to deal with updates at a certain frequency.

2.2 Constraints

The INFOD model allows three types of constraints – property constraint, data constraint and dynamic
consumer constraint. Only the property constraints are evaluated in the registry. As described in the
specification, a property constraint is defined in terms of the property vocabulary attributes and since
the property vocabulary instance is an XML document, constraints should be defined as XQuery or XPath
expressions. In our system, property constraints are defined as XQuery statements using FLWR
expressions with the for, let, where, and return clause. The data constraints and the dynamic consumer
constraints are evaluated by the publishers. The data constraints are described in terms of the data
vocabulary attributes and the dynamic consumer constraints are based on the property vocabulary

4

attributes. However, for evaluating the dynamic consumer constraints the publisher needs information
from the registry, which can be obtained through the getMetaData operation. These two constraints can
take any form (XQuery, XPath) and is entirely dependent on the capability of the publisher entity
evaluating these constraints. The publisher can be a sophisticated system capable of evaluating these
constraints or could rely on the registry to evaluate these constraints. In our implementation, both the
constraints are defined as XPath expressions. Simple data constraints are evaluated at the publisher
while certain data constraints along with the data are evaluated in the database taking advantage of
Oracle features. This request for evaluation is not a part of the INFOD API specification. The dynamic
consumer constraints are evaluated at the INFOD registry by calling the getMetaData operation with
appropriate arguments. The constraint is evaluated for every new notification message received by the
publisher entry.

2.3 Mutual Filtering

Table 1. Resources to be compared in the Registry

Table 1 details which entity can define constraints on which other entities in the INFOD registry and
accordingly the matching procedure should enforce all these possible comparisons. The row headers
indicate the constraints defined by the entities and the column headers indicate the instances of the
entities in the registry. A publisher instance means the publisher entry, publisher property vocabulary
instance and publisher data source entries. When a consumer defines a constraint it would be applicable
to publishers, subscribers and data source instances in the registry.

Some rules to be followed while performing mutual filtering (explained in sec 3.3)

 A subscription binds publishers/data sources and consumers. In the absence of a subscription
publishers/data sources and consumers are NOT matched; there is no information flow.

 Any create/replace/drop in the INFOD registry will trigger the matching procedure and activate
evaluation of all relevant constraints in the registry except for those cases where it can be
logically predetermined that any particular operation would not require evaluation of a group of
entries or constraints in the registry. For example, if through prior evaluation or the matching
process it has been determined that a specific publisher and subscriber cannot be matched then
any subscription created by the subscriber need not be evaluated against a set of publishers.

5

However, if any of the publisher or subscriber properties change then all subscriptions need to
be evaluated.

 All constraints relating a publisher and a consumer need to be satisfied for notification to occur.
If a subscription relates a publisher and a consumer, and the consumer satisfies the publisher's
constraint but the publisher does not satisfy the consumer's constraint then the publisher and
the consumer are not matched to each other.

 If a subscription does not specify any property constraint then all publishers and consumers in
the registry are related through the subscription and they should be associated only based on
their individual property constraints.

 A data source entry inherits all the property constraints of the publisher it references. For a data
source to be matched with a consumer, the data source entry’s property constraint and the
referenced publisher’s property constraint should be satisfied. For example: if a single publisher
contains multiple sensors, then each sensor is identified as a data source entry in the registry
and each sensor could have a property constraint. This constraint is in addition to the publisher
entry’s property constraint and both of these property constraints need to be satisfied.

 Similarly, the subscription inherits all the property constraints of the subscriber that created the
particular subscription.

3. Implementation Details

Figure 1. INFOD Registry Implementation Model

The system was developed as a client-server model, which enabled testing, evaluating and building
applications. Figure 1 shows the system architecture. The server is the INFOD registry accessible as a
web server through SOAP requests, and the client supports an API for interaction with the registry. The
server side system consists of the Oracle database and Oracle Application Server (OC4J - Oracle

6

Containers for J2EE). All INFOD interfaces are available as web services capable of being communicated
using SOAP messages, as defined in the INFOD specification. Oracle Application Server OC4J is being
used to host the INFOD web services, which connects and communicates with the database. Oracle
JDeveloper tool is used to generate INFOD web services from PL/SQL functions in the database and host
it on OC4J. The PL/SQL functions define the various INFOD interfaces performing database operations
(insert, update, delete) and triggering actions (matching, notification) in the database.

3.1 Registry Structure

Figure 2. INFOD Registry Tables in Database

Figure 2 illustrates the INFOD tables in the database, the utility tables and their structure. The tables
prefixed with 'INFOD' store information on entities registered through the INFOD interfaces as XML
documents - as defined in the specification document. The other tables in the database store data in a
form suitable for matching and for generating notifications. Figure 3 provides more details on the tables
prefixed with 'INFOD'. The publisher table in figure 2 is linked to tables INFODpublisher,
INFODdatasource and INFODpropertyVocabInst. The publisher table is used for matching, where a
publisher is represented with information from its entry and the referenced property vocabulary
instance. If a single publisher entry has multiple property vocabulary instances then the publisher table
would have multiple entries with each one referring to a different instance. All these entries would have
the same property constraints since they refer to a single publisher entry. A data source entry is
identified by a separate entry in the publisher table associated to its corresponding property vocabulary
instance. The data source entry's property constraint also includes the property constraint from the
publisher being referenced in addition to its property constraint. Similarly the consumer table combines
the consumer entry and property vocabulary instance as a single entity to enable matching. The
subscription table associates the subscriber’s entry, including the subscription defined by the subscriber
and the property vocabulary into a single entry.

7

INFODPropertyVocabulary

PropertyVocabularyURI(PK)

VocabularyName
VocabularyDescription
VocabularyBody

ValidFrom

ValidTo

INFODPropertyVocabularyInstance

PropertyVocabularyInstanceURI(PK)

EntryReference
PropertyVocabularyReference
VocabularyInstanceBody

ValidFrom

ValidTo

INFODPublisher

PublisherEntryURI(PK)

WebServiceAddress
PublisherName
PublisherDescription
PropertyConstraint
Notification

ValidFrom

ValidTo

INFODConsumer

ConsumerEntryURI(PK)

WebServiceAddress
ConsumerName
ConsumerDescription
PropertyConstraint
Notification

ValidFrom

ValidTo

INFODSubscriber

SubscriberEntryURI(PK)

WebServiceAddress
SubscriberName
SubscriberDescription
PropertyConstraint
Notification

ValidFrom

ValidTo

INFODDataSource

DataSourceEntryURI(PK)

DataSourceEntryName
DataSourceEntryDescription
PublisherEntryReference
DataVocabularyReference
PropertyConstraint

ValidFrom

ValidTo

INFODDataVocabulary

DataVocabularyURI(PK)

VocabularyName
VocabularyDescription
VocabularyLanguage
LanguageUsageDescripiton
VocabularyBody

ValidFrom

ValidTo

INFODSubscription

SubscriptionURI(PK)

SubscriptionName
SubscriptionDescription
SubscriberReference
DataConstraint
PropertyConstraint
DynamicConsumerConstraint

ValidFrom

ValidTo

Figure 3. Registry ER Model

Figure 3 shows the structure for the tables that record INFOD metadata. The name for each table is
indicated in the grey background. Each table in the figure has four columns; the first column is the
primary key element, the ValidFrom and ValidTo fields are the third and fourth columns. The rest of the
elements in the respectively tables are in a single XMLType column corresponding to an XML schema.
For example, the consumer web service address (WSA), name, description, property constraint and
notification details are stored as an XML document in an XMLType column. In the current
implementation, this XML content is the body of the SOAP request messages from a consumer, when a
user creates an entry in the INFOD registry. The primary key is a unique URI identifying the information
in the registry. The ValidFrom and ValidTo fields are used for managing the lifecycle of the entities in the
registry. When a new entry is created the ValidFrom field is set to the current time and when any drop
operation is requested the ValidTo field is set.

The tables NewEntryQueue and NotificationQueue in Figure 2 represent queues. Every new entry in the
registry is added to the NewEntryQueue for the job handler to be matched with other entities in the
registry. Once the mutual filtering process is done the entry is removed from the NewEntryQueue table.
After performing the mutual filtering, matched entities need to be notified of the results through web
service notification. The entity to be notified with the relevant subscription causing the notification is

8

logged in the NotificationQueue table. A user scheduled job handler reads from the notification queue
table and sends a web service notification message based on the entities role as a publisher, consumer
or subscriber.

3.2 Registry Operation
The registry supports three kinds of operations: create, replace and drop. The replace operation is
restricted only to certain entity information in the registry. Figure 4 illustrates a typical sequence for a
consumer entry being created, replaced, and dropped.

When a new entry is created a unique URI (Universal Resource Identifier) is generated, which uniquely
identifies every resource in the registry. When a consumer entry is created it triggers a java procedure
call for reorganizing the information and parsing the constraints enabling efficient matching within the
registry. As noted previously the consumer can define constraints on publishers and subscribers of
interest. In this case, the consumer's property constraint is parsed into two constraints one that is
applied on the publisher metadata and the other constraint that is applied on subscriber metadata. The
constraints need to be parsed such that they can be evaluated using expression filters. If the consumer
does not have a constraint on a particular entity, say the subscriber, the constraint is represented as
“1=1”, which matches all entities. Apart from the constraints, other information in the entry is also
extracted from the XML doc and stored in columns of varchar type for easy retrieval. The information
concerning the new entry is updated in the NewEntryQueue table for mutual filtering in the registry. A
job handler repeatedly checks for new entries in the NewEntryQueue table and performs the match
operation, explained below. Once the consumer is matched with publishers and subscribers in the
registry a notification message is sent to all the matched entities. The entities to be notified and the
notification message that needs to be sent are queued up in the NotificationQueue table. Another job
handler checks this table periodically and sends the web service notification messages. The need for
having a separate table for notification is to avoid network delays inhibiting procedure runs in the
registry.

9

Figure 4. Registry Operation Sequence for Consumer Create/Replace/Drop

When an existing entry is being replaced, first the registry checks if such entry exists based on the
resource URI. In the current implementation, the replace operation is treated as deleting the existing
entry and then creating a new entry with the same URI. The entity information is parsed and the
relevant tables are updated. Similar to operations performed when a new entry is created, the replaced
entity information is queued for matching and notification. However, while replacing an entity we need
to check if the entry has multiple instances then all the resources associated with the entity needs to be
queued for mutual filtering.

The drop operation does not call for mutual filtering but entities needs to be notified when an
association is no longer valid. Since, the results of mutual filtering is stored in the registry identifying

10

which entity is no longer associated with the entry being dropped is a lookup on the results table. The
registry first checks if the entity to be dropped is present in the system. The registry supports three
kinds of drop operations. If Unused mode, invoked when the user wants to drop an entry only when it is
not being associated with any other resource in the registry. The Disable New option allows the user to
restrict the entity from forming new associations with other entities in the system. This is done by
updating the ValidTo field associated with the entities, which is checked whenever an entity is being
matched. Cascade mode deletes the entry and deletes all the associations the system has in the
registry.

3.3 Mutual Filtering
Entity descriptions, property constraints, and subscriptions comprise the metadata information that
INFOD uses to associate entities within a community. We refer to this model as mutual filtering; the
actual implementation is realized with a three-way join across publisher/datasource, consumer, and
subscriber/subscription information. The process of mutual filtering attempts to satisfy the following
conditions: (a) the publisher and the consumer should satisfy constraints for the subscription and the
subscriber which created the subscription, (b) the subscriber and the consumer should satisfy
constraints imposed by the publisher, and (c) the publisher and the subscriber should satisfy constraints
expressed by the consumer. A publisher and a consumer are associated with each other only when all
the conditions are met.

Figure 5. Mutual Filtering Evaluations

Figure 5 illustrates the computations involved in mutual filtering, and the numbers on the arrow indicate
the number of computations involved (total six and the sequence of evaluation might vary). We consider
the three metadata sets describing the entities – publishers/datasources, consumers, and subscribers.
We must constrain the entities with three sets of property constraints defined by the
publishers/datasources, consumers, and subscribers/subscriptions. For a publisher and a consumer to
be matched, all the six computations must be evaluated. We use the Oracle Database Expression Filter
feature to index and evaluate the constraints captured as XPath expressions in INFOD metadata tables.
The XPath expressions indexing using Expression Filter can be evaluated using an XML document that is
transient or persistently stored in the database using XMLtype data type. The property vocabularies of

11

publishers, consumers, and subscriptions, which are captured as XML data, are used to evaluate the
corresponding constraints as described in section 4.1.

The mutual filtering operation can be performed in a single SQL select statement by specifying all the six
computations in the WHERE clause. This query may be executed for each incoming publisher, consumer,
or subscription. It may be observed that for the addition of a specific publisher, consumer, or
subscription there is only the need to evaluate the constraints that exist between the specific entity and
other two entity types. Hence, the mutual filtering operation can be performed with fewer joins and
computations if some of the mappings between the entities are pre-computed and materialized.

Figure 6. Mutual filtering in the INFOD registry

The optimization is based on the following observations

 The initial approach of using a single SQL statement for mutual filtering does many re-
evaluations for every new entry, which could be avoided if the results of previous evaluations
are stored.

 When a new publisher is created, the new publisher needs to be matched only with consumers
and subscriptions, and the knowledge of which consumer and which subscription should be
associated may be pre-computed.

 Doing a pair-wise association between publishers, consumers, and subscriptions may reduce the
number of computations when a new entry is created.

 It was faster to do a three-way join (mutual filtering) using ROWID's in the SQL-WHERE clause
rather than evaluating constraints across three tables.

Figure 6 illustrates the tables in the database with the mapping tables representing the intermediate
stage. The publishers and consumers are matched on their constraints and metadata, and the results are
stored in the pub-con mapping table. Similarly, the sub-con mapping table has the list of the
subscription and consumer pairs that can be associated and the pub-sub mapping table has the
publisher and subscription pairs. With the intermediate steps, the mutual filtering function is a three-
step process. Say, a new publisher joins the INFOD system. The first step is in finding all the consumers

12

the new publisher can be matched with. For this we evaluate the new publisher's constraint on all
consumers’ metadata and all the consumers’ constraints are evaluated on the new publisher's
metadata. The result is the new publisher being matched with consumers and the results are updated in
the pub-con mapping table. Similarly, the second step involves finding all the subscribers/subscriptions
the new publisher can be mapped with and updating the pub-sub mapping table. The final step is a
three-way join across the mapping tables for determining the subscription-publisher-consumer tuples.
These tuples give us the desired information on which publisher and which consumer are associated and
through which subscription. However, the final step depends on the number of entries existing in the
system, which determine the number of rows in the mapping table and correspondingly affect the
computation time.

3.4 Notification Messages
Publishers, consumers, and subscribers get notified by the INFOD registry. A publisher is notified of the
matching subscriptions and the consumers bound to those subscriptions. Similarly, a consumer is
notified of the matching subscriptions and publishers, and the subscriber of the matching consumers
and publishers bound by a specific subscription. The INFOD specification document provides details of
the format of the notification messages.

Notification messages are sent when any change to the information in the registry results in a change to
the association between publishers, consumers, and subscribers (or subscriptions). If a consumer's
property constraint has changed, this would require the re-evaluation of the consumer’s constraint with
that of the information in the registry. By the end of the process new associations have formed and
existing associations would have been broken due to the change in the consumer's property constraint.
For example, if a consumer C1 was associated by subscription S1 to publishers P1, P2, P4 and C1 was
also associated by subscription S2 to publishers P1, P3, and P4. If consumer C1’s constraint has changed
resulting in C1 not associated by S1 and is associated by another subscription S3 to publishers P1, P4.
Then publisher P1 is notified of the changes in association though S1 and is also notified of the new
association with C1 through S3.

The web service notification message to be sent to entities is created in a PL/SQL procedure using a
DOM XML parser. The process of sending notification messages is handled by a java procedure called
within the PL/SQL procedure. As described earlier, the entities to receive the notification messages are
queued in a NotificationQueue table and are handled individually by a job handler. This is to avoid the
delays in sending the notification messages affecting the completion of the mutual filtering process and
performing other registry functions. From the above example a change in C1's constraint results in
sending a number of notification messages, which might be time consuming depending on the network
connectivity.

3.5 Garbage Collection
This procedure is for removing resources in the registry, which have been dropped by 'DISABLE NEW'
execution mode. The procedure is run periodically to check for resources, which are no longer
associated with any other resources in the registry. The procedure looks for entries, which have a
ValidTo field time stamped and looks for any references associated to the resource.

13

3.6 Client API

Figure 7. Client Implementation

The client module was developed to interact with the INFOD registry. The client environment was
developed as three components/stages, as shown in the figure 7. The first component is the client
library coded in java for interaction with the INFOD registry service. The library defines all the operations
as function calls that the user can call for interacting with the registry. The function call supports all
interfaces that are defined in the INFOD specification document. Application developers who would like
to interact with the INFOD system can use this software package for developing custom applications
interacting with the registry. The second component is a web interface for accessing the registry. Users
can use this web interface to create, replace, and drop resources in the registry. First time users are
allowed to create an account signing up for a username and password. The next time the user returns,
uses the login information to view the resources the user had created and receives all the notification
messages received when the user was not logged in. This interface helps users build applications and
understand how the INFOD registry associates users based on the resources they had created in the
registry. The user information and the associated resource URI's are stored in a PostGreSQL database at
the client side. The third component is for binding user applications to the INFOD system. A standard set
of java interfaces have been identified, which a user application can call for communicating with the
existing client setup. The user through the web interface uploads a jar package while creating an entry in
the registry through the web interface. The jar file for publishers would help forward the notification
messages to the user applications and any notification messages generated by the application can be

14

directed using the existing client module. Similarly, the jar file for subscribers and consumers directs
notification messages to their respective application modules.

4. Changes to the INFOD specification
Appendix A lists the errata that should be applied to the INFOD specification version 1, GFD 110
document. Some of the major changes are

 The specification document had some namespace discrepancies; http://www.ggf.org/INFOD/ shall
be the recognized namespace.

 In the current specification, the data source entry and property vocabulary instance have no replace
operation. However, replace operation for data source entry and property vocabulary instance is
allowed and the interface specification shall be added in the next version of the specification.

 Each resource in the INFOD registry shall be identified by a unique URI (Universal Resource
Identifier), any reference to EPR (End Point Reference) in the document shall be referred to as URI.

 The GetNotificationMessages Operation

The GetNotificationMessages operation provides the notification messages that are sent by the registry
to publishers, subscribers and consumers assuming notification has been requested.

The GetNotificationMessages is a special case of the GetMetaData operation.

The format of the request message for a GetMetadata operation is:

<infod:GetNotificationMessages>
<infod:EntryReference>
 {xsd:URI}
</infod:EntryReference>
<infod:SubscriptionReference>
 {xsd:URI}
</infod:SubscriptionReference> ?
</infod:GetNotificationMessages>

The elements of the GetNotificationMessages message are further described as follows:

/infod:EntryReference

This element must be a valid URI of either a publisher, subscriber, or consumer entry.

/infod:SubscriptonReference

This element must be a valid URI of a subscription. Only messages related to the specified URI
will be create.

If this element is omitted all subscriptions will be evaluated. Notification messages will only be
created for those subscriptions for which a notification message would be send.

15

A WS-Addressing Action header with the value http://www.ggf.org/INFOD/INFODRegistry/GetMetaData
MUST accompany the message.

INFOD Registry Response

The response of the INFOD registry is:

<infod:GetNotifcationMessagesResponse
<infod:GetNotificationMessagesResult>
infod:PublisherNotification
</infod:GetNotificationMessagesResult> * |
<infod:GetNotificationMessagesResult>
infod:ConsumerNotification
</infod:GetNotificationMessagesResult> * |
<infod:GetNotificationMessagesResult>
infod:SubscriberNotification
</infod:GetNotificationMessagesResult> *
<infod:GetNotificationMessagesResponse>

The content of infod:GetNotificationMessagesResult MUST be structured according to the type of entry
for which the information was requested:.

 If the EntryReference represents a publisher, the message represents a PublisherNotification.

 If the EntryReference represents a subscriber, the message represents a SubscriberNotification.

 If the EntryReference represents a consumer, the message represents a ConsumerNotification.

One of the following fault codes MUST be sent if the operation fails:

 GetNotificationMessagesAuthorizationFailure: User not authorized to use the operation at this
INFOD registry

 MissingRequiredParameterFault: A required parameter was not specified

 InvalidURIFault: The URI does not define a proper resource

The message MUST be structured according to the WS-Base Faults specification. For examples using
SOAP, see the SOAP v1.2. Base Fault Spec (see http://docs.oasis-open.org/wsrf/wsrf-ws_base_faults-
1.2-spec-os.pdf).

5. Conclusion

The experience helped the group understand some of the shortcomings of the specification. A few of
them have been addressed in the errata and any future version of the specification should address these
and add more features to the existing model.

16

6. Author Contact Information

Ronny Fehling
Oracle Corporation
600 Blvd. de Maisonneuve Ouest
Montreal
Quebec H3A 3J2
Canada

Steve Fisher
Rutherford Appleton Laboratory
Chilton
Didcot
Oxon
OX11 0QX
UK

Dieter Gawlick
Oracle Corporation
500 Oracle Parkway
Redwood Shores
CA 94065
USA

Raghul Gunasekaran
University of Tennessee
1508 Middle Drive
Knoxville TN 37996
USA

Mallikarjun Shankar
Oak Ridge National Laboratory
OakRidge
TN 37831
USA

AravindYalamanchi
Oracle Corporation
1 Oracle Drive
Nashua NH 03062
USA

7. Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document
or the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of claims of rights made
available for publication and any assurances of licenses to be made available, or the result of an attempt
made to obtain a general license or permission for the use of such proprietary rights by implementers or
users of this specification can be obtained from the OGF Secretariat.

17

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to practice
this recommendation. Please address the information to the OGF Executive Director.

8. Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use of the
information herein will not infringe any rights or any implied warranties of merchantability or fitness for
a particular purpose.

9. Full Copyright Notice

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this document
itself may not be modified in any way, such as by removing the copyright notice or references to the
OGF or other organizations, except as needed for the purpose of developing Grid Recommendations in
which case the procedures for copyrights defined in the OGF Document process must be followed, or as
required to translate it into languages other than English. The limited permissions granted above are
perpetual and will not be revoked by the OGF or it successors or assignees.

18

Appendix A: Errata

1. Lines 172 and 221 - Dynamic consumer constraints have to be handled by the publishers.
2. Line 171-173 - add the following explanation: 'The registry will use static constraints to determine

which consumers are to be notified. This list can be restricted by dynamic consumer constraints,
which, if present, have to be processed by the publisher for each message.'

3. Lines 383 and 491: ', data sources' has to be deleted
4. Line 384 and all other explanations for infod:PropertyConstraint: The text "an XQuery" has to be

replaced by "A sequence of namespace declarations following the XQuery prologue entry syntax
http://www.w3.org/TR/xquery/#id-namespace-declaration and local function definitions following
the XQuery prologue entry syntax http://www.w3.org/TR/xquery/#dt-udf and let statements
http://www.w3.org/TR/xquery/#id-for-let followed by a single WHERE clause as defined in
XQueryhttp://www.w3.org/TR/xquery/#id-where. Each namespace and local function must be
terminated by a semicolon. In any namespace definition the URILiteral must exactly match the URI
of a property vocabulary. In each WHERE clause the namespace must always be specified to match a
property vocabulary referenced in a namespace declaration. The following variables are predefined
$con, $subr, $subn $pub and $dse: the property vocabulary instance of a consumer entry (or
subscriber, subscription, publisher or data source entry).

5. After line 413: Syntax error in property constraint
6. Line 757 and all other explanations for ExecutionFaultMode have to be replaced by: Invalid

ExectionMode provided
7. Lines 1122-1124 - the description has to reference /infod:status as in lines 894 and 895
8. Line 1618 and throughout, state that GetMetaData call is complete XQuery 1.0
9. Line 1627 has a typo: replace specify specific a by specify a specific
10. Line 1628 should be removed
11. Before line 1632 add 'To identify all resources in an INFOD registry -

fn:collection('$$infodResources')'
12. Line 1632 has to be replaced by: 'To identify all publishers - fn:collection('$$infodPublishers')' The

equivalent changes need to be made for lines 1633 - 1640 - as described in the Extended
Specification in section 2.7.1

13. After line 1639 add: 'To identify all instances of a specific property vocabulary - fn:collection('epr')
where epr is the EPR assigned by the INFOD registry'. An error code has to be added after line 1656
'InvalidEPRFault - An EPR in the XQuery does not reference a valid INFOD registry vocabulary.'

14. Line 1659 after this line add 3 new calls: GetPublisherNotificationMessages,
GetSubscriberNotificationMessages and GetConsumerNotificationMessages the input in each case is
the URI (ex EPR) of the Publisher, Subscriber or Consumer entry for which the information is desired.
The response is the set of messages that would be sent as notifications if the Publisher, Subscriber
or Consumer entry had just been created.

15. Line 1669 should be removed
16. Line 1650-1651 should be extended by: as defined in 'XSLT 2.0 and XQuery 1.0 Serialization.' (the

reference http://www.w3.org/TR/xslt-xquery-serialization/ should be added as a footnote)
17. Line 1681: after this line ConsumerReference of type wsa:ReferenceType has to be added. This field

has to be defined at least once. The explanation has to be added after line 1702: The endpoint
reference of all consumers that have to receive the message and are related to the WSAReference
used to send this message. Additionally, the XML and the WSDL appendices have to be updated.

19

18. Line 1696: 'VocabularyAssociation' has to be replaced by 'DataSource'
19. Line 1771: the ConsumerEntryReference (at least one occurrence) has to be complemented by the

ConsumerReference, the external EPR of the consumer (exactly one occurrence). These 2 fields have
to become part of a complex element called ConsumerList. ConsumerList (at least one occurrence).
The text starting on line 1788 has to be updated accordingly. Additionally, the XML and the WSDL
appendices have to be updated.

20. Line 1776: after this line a field infod:DataSource has to be added. This field specifies to which data
source or data sources the following data constraints have to be applied to (at least one
occurrence). An explanation has to be added after line 1796. Additionally, the XML and the WSDL
appendices have to be updated.

21. In the intro and throughout, state that all resources are represented as individual documents
22. In the intro and throughout, state that the URI of the document representing the resource is

returned (rather than EPR) when a resource is created and that if this URI is U then document-
uri(doc(U)) == U

23. Still need to define what data and dynamic constraints look like - at least for XML - there are
concerns about how to specify for non-XML

24. Throughout the document, the INFOD namespace shall be 'www.ggf.org/INFOD' and all the WS-
Address action header URI's shall be prefixed by 'www.ggf.org/INFOD' instead of
'www.ogf.org/infod'.

