
GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)
 Editors:

 J. Tatemura, NEC
CDDLM Configuration Description Language
http://forge.gridforum.org/projects/cddlm-wg 9/22/2005

CDDLM Configuration Description Language
Specification

Version 1.0 Draft 09-22-2005 5

Status of this Memo
This document provides information to the community regarding the specification of the
Configuration Description Language. Distribution of this document is unlimited.

Copyright Notice 10
Copyright © Global Grid Forum (2002-2005). All Rights Reserved.

Abstract
Successful realization of the Grid vision of a broadly applicable and adopted framework 15
for distributed system integration, virtualization, and management requires the support
for configuring Grid services, their deployment, and managing their lifecycle. A major
part of this framework is a language in which to describe the components and systems
that are required. This document, produced by the CDDLM working group within the
Global Grid Forum (GGF), provides a definition of the XML-based configuration 20
description language and its requirements.

CDDLM Specs
There are five documents created by the CDDLM group. They are described in the text below.

The CDDLM Foundation document sets the stage for the remaining documents by introducing the
area, by describing functional requirements, use cases, and high-level architecture. It also 25
compares this group with other working groups as well as with other related efforts in the
industry.

The SmartFrog Language spec describes a language primarily intended for configuration
description and deployment. It is declarative, i.e. it supports attribute value pairs. Furthermore, it
supports inheritance, references (including lazy), parameterization, predicates and schemas. It has 30
the same functionality as CDL (see next paragraph), except that it is not XML-based. SmartFrog
language predates CDL and it was used as a model when creating CDL. The two languages will
be compatible. CDL is primarily intended for machines, SmartFrog for humans.

The CDDLM Configuration Description Language (CDL) is an XML-based language for
declarative description of system configuration that consists of components (deployment objects) 35
defined in the CDDLM Component Model. The Deployment API uses a deployment descriptor in
CDL in order to manage deployment lifecycle of systems. The language provides ways to
describe properties (names, values, and types) of components including value references so that
data can be assigned dynamically with preserving specified data dependencies. A system is

hiro
CDDLM working group

hiro
CDDLM group.

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 2

9/22/2005

described as a hierarchical structure of components. The language also provides prototype-based
template functionality (i.e., prototype references) so that the user can describe a system by
referring to component descriptions given by component providers.

The CDDLM Component Model outlines the requirements for creating a deployment object
responsible for the lifecycle of a deployed resource. Each deployment object is defined using the 5
CDL language and mapped to its implementation The deployment object provides a
WS-ResourceFramework (WSRF) compliant "Component Endpoint" for lifecycle operations on
the managed resource. The model also defines the rules for managing the interaction of objects
with the CDDLM Deployment API in order to provide an aggregate, controllable lifecycle and
the operations which enable this process. 10
The deployment API is the WSRF-based SOAP API for deploying applications to one or more
target computers. Every set of computers to which systems can be deployed hosts one or more
"Portal Endpoints", WSRF resources which provide a means to create new "System Endpoints".
A System Endpoint represents a deployed system. The caller can upload files to it, then submit a
deployment descriptor for deployment. A System Endpoint is effectively a component in terms of 15
the Component Model specification -it implements the properties and operations defined in that
document. It The deployment API is the WSRF-based SOAP API for deploying applications to
one or more target computers. Every set of computers to which systems can be deployed hosts
one or more "Portal Endpoints", WSRF resources which provide a means to create new "System
Endpoints". A System Endpoint represents a deployed system. The caller can upload files to it, 20
then submit a deployment descriptor for deployment. A System Endpoint is effectively a
component in terms of the Component Model specification -it implements the properties and
operations defined in that document. It also adds the ability to resolve references within the
deployed system, enabling remote callers to examine the state of components with it.
 25

hiro
It The deployment API is the WSRF-based SOAP API for deploying applications to
one or more target computers. Every set of computers to which systems can be deployed hosts
one or more "Portal Endpoints", WSRF resources which provide a means to create new "System
Endpoints". A System Endpoint represents a deployed system. The caller can upload files to it, 20
then submit a deployment descriptor for deployment. A System Endpoint is effectively a
component in terms of the Component Model specification -it implements the properties and
operations defined in that document.

hiro
Duplicated text should be deleted.

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 3

9/22/2005

Table of Contents
Table of Contents ..3
List of Figures...5
1 Introduction...6

1.1 CDDLM Specs ..6 5
1.2 Notational Conventions..7

2 CDDLM-WG and the Purpose of this Document ...7
3 Configuration Description in CDDLM...7

3.1 The CDDLM Framework...7
3.2 Use of Configuration..9 10

4 Requirements for the Language ... 10
5 Configuration Data Model ... 10

5.1 Property Lists... 10
5.2 Configuration Description.. 11

6 Document Structure... 11 15
6.1 Types... 12
6.2 Configuration... 12
6.3 System... 12
6.4 Import.. 12
6.5 Documentation... 12 20

7 Configuration Description ... 12
7.1 Property List Name.. 12
7.2 Prototype References ... 13

7.2.1 Reference Description .. 13
7.2.2 Reference Resolution ... 13 25
7.2.3 Resolvable Prototype Reference ... 15
7.2.4 Example... 15

7.3 Value References ... 18
7.3.1 Reference Description .. 18
7.3.2 Resolution.. 20 30
7.3.3 Resolvable Value Reference... 20
7.3.4 Prototype Resolution and Value References ... 20
7.3.5 Example... 21
7.3.6 Expression ... 23

7.4 Schema Annotations .. 24 35
7.4.1 Property Type Declarations .. 24
7.4.2 Property Value Occurrence Constraints .. 24

7.5 Laziness Annotations ... 25
7.5.1 Lazy Value Resolution ... 25
7.5.2 Lazy Properties .. 25 40
7.5.3 Lazy References... 26

7.6 Parameterization .. 27
8 System Description.. 28
9 Import ... 28
10 Documentation .. 29 45
11 Security Considerations ... 30

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 4

9/22/2005

12 Editor Information ... 30
13 Acknowledgements.. 30
Intellectual Property Statement.. 30
Full Copyright Notice.. 30
References... 31 5
Appendix A: XML Schema... 31
Appendix B: Example ... 35

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 5

9/22/2005

List of Figures
Figure 1: Use of CDL in the CDDLM Framework...9
Figure 2: Functionalities of the Configuration Description Notations............................. 11
Figure 3: Example of path expression.. 20
 5

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 6

9/22/2005

1 Introduction
Deploying a complex, distributed service presents many challenges related to service
configuration and management. These range from how to describe the precise, desired
configuration of the service, to how we automatically and repeatably deploy, manage and
then remove the service. This document addresses the description challenges, while other 5
challenges are addressed by the follow-up documents. Description challenges include
how to represent the full range of service and resource elements, how to support service
"templates", service composition, correctness checking, and so on. Addressing these
challenges is highly relevant to Grid computing at a number of levels, including
configuring and deploying individual Grid Services, as well as composite systems made 10
up of many co-operating Grid Services.
1.1 CDDLM Specs
There are five documents created by the CDDLM working group. They are described in the text
below.

The CDDLM Foundation document [CDDLM] sets the stage for the remaining documents by 15
introducing the area, by describing functional requirements, use cases, and high-level
architecture. It also compares this working group with other working groups as well as with other
related efforts in the industry.

The SmartFrog Language spec [SF-CDL] describes a language primarily intended for
configuration description and deployment. It is declarative, i.e. it supports attribute value pairs. 20
Furthermore, it supports inheritance, references (including lazy), parameterization, predicates and
schemas. It has the same functionality as CDL (see next paragraph), except that it is not
XML-based. SmartFrog language predates CDL and it was used as a model when creating CDL.
Whereas CDL is primarily intended for machines, SmartFrog is for humans and translated to
CDL. 25
The CDDLM Configuration Description Language (CDL) is an XML-based language for
declarative description of system configuration where system is consists of components
(deployment objects) defined in the CDDLM Component Model. [Component Model] The
Deployment API [CDDLM-API] uses a deployment descriptor in CDL in order to manage
deployment lifecycle of systems. XML-CDL provides ways to describe properties (names, values, 30
and types) of components including value references so that data can be assigned dynamically
with preserving specified data dependencies. A system is described as a hierarchical structure of
components. XML-CDL also provides prototype-based template functionality (i.e., prototype
references) so that the user can describe a system by referring to component descriptions given by
component providers. 35
The CDDLM Component Model outlines the requirements for creating a deployment object
responsible for the lifecycle of a deployed resource. Each deployment object is defined using the
CDL language and mapped to its implementation. The deployment object provides a
WS-ResourceFramework (WSRF) compliant "Component Endpoint" for lifecycle operations on
the managed resource. The model also defines the rules for managing the interaction of objects 40
with the CDDLM Deployment API in order to provide an aggregate, controllable lifecycle and
the operations which enable this process.

The deployment API is the WSRF-based SOAP API for deploying applications to one or more
target computers. Every set of computers to which systems can be deployed hosts one or more
"Portal Endpoints", WSRF resources which provide a means to create new "System Endpoints". 45

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 7

9/22/2005

A System Endpoint represents a deployed system. The caller can upload files to it, then submit a
deployment descriptor for deployment. A System Endpoint is effectively a component in terms of
the Component Model specification, it implements the properties and operations defined in that
document. The deployment API is the WSRF-based SOAP API for deploying applications to one
or more target computers. Every set of computers to which systems can be deployed hosts one or 5
more "Portal Endpoints", WSRF resources which provide a means to create new "System
Endpoints". A System Endpoint represents a deployed system. The caller can upload files to it,
and then submit a deployment descriptor for deployment. A System Endpoint is effectively a
component in terms of the Component Model specification -it implements the properties and
operations defined in that document. It also adds the ability to resolve references within the 10
deployed system, enabling remote callers to examine the state of components with it.

1.2 Notational Conventions
The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, 15
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in
this document are to be interpreted as described in RFC 2119 [RFC2119].
The following namespaces are used in this document:
xsd http://www.w3.org/2000/10/XMLSchema
cdl http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0
XML document structure is described in an informal syntax where
• <-- description --> is a placeholder for elements from some "other" namespace (like 20

##other in XSD)
• Characters are appended to elements, attributes, and <-- descriptions --> as follows:

"?" (0 or 1), "*" (0 or more), "+" (1 or more). The characters "[" and "]" are used to
indicate that contained items are to be treated as a group with respect to the "?", "*",
or "+" characters. 25

2 CDDLM-WG and the Purpose of this Document
The CDDLM working group addresses how to: describe configuration of services; deploy
them on the Grid; and manage their deployment lifecycle (instantiate, initiate, start, stop,
restart, etc.). The intent of the working group is to gather researchers, developers, 30
practitioners, and theoreticians in the areas of services and application configuration,
deployment, and deployment life-cycle management and to explore the community need
for a broader effort in this area. The target of the CDDLM working group is to come up
with the specifications for CDDML a) language, b) component model, and c) basic
services (deployment API). This document represents a CDDLM language specification 35
based on XML.

3 Configuration Description in CDDLM
3.1 The CDDLM Framework
 This subsection provides an overview of the CDDLM framework, where 40
CDL is used.

hiro
The deployment API is the WSRF-based SOAP API for deploying applications to one
or more target computers. Every set of computers to which systems can be deployed hosts one or 5
more "Portal Endpoints", WSRF resources which provide a means to create new "System
Endpoints". A System Endpoint represents a deployed system. The caller can upload files to it,
and then submit a deployment descriptor for deployment. A System Endpoint is effectively a
component in terms of the Component Model specification -it implements the properties and
operations defined in that document. 10

hiro
Duplicated text should be deleted.

hiro
Please explain that section 3 & 4 are informative and section 5-10 are normative part.

hiro
This document represents a CDDLM language specification
based on XML.

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 8

9/22/2005

In a Grid environment, a user executes an application (or job) with resources allocated on
demand. Such resources can be hardware, software, or any other objects which are
managed to make the application executable. Once required resources allocated, they
need to be configured appropriately so that they are ready to use by the application. The
CDDLM framework provides ways to describe configuration of resources and manage 5
their deployment lifecycle. In this framework, configuration of the entire set of resources
for the application execution is managed as a system. To make an application (or job)
ready to execute, a system must be made (and kept) ready. A system consists of
components which encapsulate resources as configurable units.
• Components: A component is the smallest deployment unit within the CDDLM 10

framework.
• Component lifecycle: A component is treated as an atomic object that has a single

state of deployment (such as initialized, running, and terminated) although it may
internally consist of multiple pieces of hardware or software. The deployment
lifecycle of a component is represented and managed as a state machine that 15
defines transition among such states. CDL itself does not assume any deployment
lifecycle model (or state model). Instead, Component Model specification
document [Component Model] defines a specific lifecycle model.

• Properties: A component has a set of properties. The user can configure the
component by giving values of these properties. CDL provides ways to define 20
properties and assign their values.

• System: A system is a set of components required to be configured for execution of
an application.
• System lifecycle: A state of a system represents the overall states of components

in the system. A user can manage (e.g., operate and monitor) a single state of the 25
system in order to control states of the components. For example, in order to
make components running (i.e., available for the application to use), a user makes
a system running. When all the components become running, the system is
considered to become running. Relationship between a system lifecycle and
component lifecycles is specified in Component Model specification. 30

• Deployment Service: A deployment service enables a user to manage the deployment
lifecycle of a system. The service supports (1) lifecycle management operations that
control system lifecycle (i.e., state transition) and (2) lifecycle monitoring services
that let users know the deployment status. A system configuration described in CDL
is passed from the user to the service. The concrete API of this service is specified in 35
Deployment API document [CDDLM-API].

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 9

9/22/2005

!"#$%&'()*+,-

!"./"#,#0-

!"#$%&'()*+,-

!"./"#,#0-

!"#$%&'()*+,-

!"./"#,#0-

1
,
/
+"
2
.
,
#

03
,
(4
%!
,
-

"/,()0%"#-

-

-

-

+%$,!2!+,-.)#)&,.,#0-

"/,()0%"#5-

!"#$%&'()0%"#-

6,5!(%/0%"#-

7819:-

!"#$%&'()0%"#-

6,5!(%/0%"#-

7819:-

6,/+"2.,#0-

5,(4%!,-

(,;',50,(-

5,(4%!,-

6,5!(%/0%"#-

7<319:-

/'*+%5=-

6%5!"4,(2-

5250,.-

Figure 1: Use of CDL in the CDDLM Framework

3.2 Use of Configuration
Figure 1 illustrates how configuration description is used in this deployment services 5
framework.
A component provider provides a configurable component, an implementation of a
CDDLM component that encapsulates and manages resource configuration. In order to
make the configurable component available to users, the component provider describes a
component template in CDL. The user can refer to these templates in order to describe 10
component configuration appropriately.
A component template can include the following information:
• Property names
• Property types
• Default values of properties 15
• Whether property values are required or optional
• Properties that are dynamically assigned in deployment time
The CDDLM framework (hence CDL) does not specify:
• How to describe implementation of the component (i.e. how resources are configured

within a component) 20
• How to publish and discover component templates
• How to allocate or reserve resources
A deployment service provider provides service endpoints through which components are
configured as a system. It accepts a system configuration description that refers to
component templates. 25
A deployment service user describes a system configuration description in CDL, which is
given to the deployment service. To specify how configurable components should
configure resources, a system configuration description can contain:
• References to component templates
• Values of properties 30

hiro
Terminilogy shold be the same with "componet model." This document is called "Language Component" there.

hiro
Terminilogy shold be the same with "componet model." This document is called "Deployment Component" there.

Also, please add "resource" in this picture (next to this oval).

hiro
It should be called "system configuration description."

hiro
configurable component,

hiro
configurable component

hiro
component template

hiro
component configuration

hiro
A component template

hiro
Please use the same terminology with "component model."

hiro
component templates.

hiro
configurable components

hiro
component templates

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 10

9/22/2005

• Value dependencies among properties
The user can also describe partial system configuration description as templates for
convenience. Since a user typically execute an application repeatedly with different
configuration in Grid environments, such templates are useful to reuse description across
multiple deployments. A complete system configuration description can refer to these 5
templates.

4 Requirements for the Language
• Declarative Description. The configuration description should be declarative: it 10

should not be a sequence of operations but a set of declarations that describes
dependency between resources. The declarative configuration description should
provide enough information for a deployment service to dynamically generate correct
sequencing of operations across distributed resources for deployment and lifecycle
management. 15

• XML-based. The language should be XML-based. A well-formed configuration
description should be a well-formed XML document.

• Dynamic configuration. The language should be able to be applied to dynamic
configuration use cases, where some configuration parameter values can not be
determined before deployment time. 20

• Consistency. The language should be able to specify dependencies between
configuration parameter values so that the deployment service can manage
consistency between parameters.

• Composability. The complete system configuration description should be composed
by combining multiple descriptions that may be provided by multiple component 25
vendors. The language should provide a way to define a new composed configuration
description by referring to existing descriptions.

• Security. The security requirement in the deployment service framework should be
achieved by incorporating Web Service/Grid/XML security standards into a
configuration description. 30

• Extensibility. The language should allow the user to add extensibility elements in a
description.

5 Configuration Data Model
5.1 Property Lists
Data required to configure a component is given as an ordered list of properties, each of 35
which has a name and a value. A list may contain duplicate properties, i.e., properties
with the same name. A property value may be a property list so that a nested structure of
properties can be constructed.
Properties and property lists are represented as XML data defined with a domain specific
schema. A property is an XML element whose name and content represent the name and 40
value of the property, respectively. A property list is an XML element whose children are
properties. A property and a property list may have any type of attributes. These
attributes are not regarded as properties but as annotations to properties. CDL introduces
such attributes (e.g., value references) inserted in property lists.

hiro
Consistency.

hiro
This requirement is rather "referencability."

hiro
Session title should be "Property and property list."

hiro
Property Lists

hiro
an ordered list of properties,

hiro
A list is not "ordered," right? It should be "a set of properties" or just "a list of properties."

hiro
Requirements for the Language

hiro
Please add some introduction text here.

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 11

9/22/2005

The following is an example of a property list:

<WebServer>
 <hostname>example.com</hostname>
 <port>80</port> 5
 <maxClients>150</maxClients>
 <applicationServer>app1.example.com</applicationServer>
 <applicationServer>app2.example.com</applicationServer>
</WebServer>
 10
5.2 Configuration Description
In order to dynamically generate property lists for components from multiple sources,
which may be given from different organizations in different timing, CDL provides XML
notations for the following functionalities:
• Unique naming of property lists 15
• Inheritance of property lists
• References that define data dependency between properties

!"#$%#&'#&()

))!*+,-./0#)112()

))111)

!2"#$%#&'#&()

./0#3)

!"#$%#&'#&()

))!*+,-./0#)112()

))111)

!2"#$%#&'#&()

./0#4)

!566789/-8+.%#&'#&()

))111)

!2566789/-8+.%#&'#&()

./0#:)

8.*#&8-/.9#)

&#;#&#.9#))

<=/-/)=#6#.=#.9>?)

@.8A@#)./08.B)
!"#$C7/-;+&0()

)

))!"#$%#&'#&()

)))))111)

))!2"#$%#&'#&()

))111)

))!566%#&'#&()

))))

))))111)

))!2566%#&'#&()

)

!2"#$C7/-;+&0()

./0#D)

8.*#&8-/.9#)

8.*#&8-/.9#)

Figure 2: Functionalities of the Configuration Description Notations 20
The language processor resolves this inheritance and reference structure and makes
property lists available for configuration of the corresponding components.

6 Document Structure
• A CDL document has the following structure as follows:
 25
<cdl:cdl targetNameSpace=xsd:AnyURI?>
 <cdl:documentation …/>?
 <cdl:import …/>*
 <cdl:types>?
 <cdl:documentation …/>? 30

hiro
The language processor

hiro
"The language processor" is not defined so far. You may rewrite this as "This reference and inheritance should be resolved ..."

hiro
follows:

hiro
as

hiro
It is cosmetic issue but for XML text, “Courier New 10 point” is easier to read than “Lucida Console 11 point.”

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 12

9/22/2005

 <-- schema definition -->*
 <-- extensibility element -->*
 </cdl:types>
 <cdl:configuration>?
 <cdl:documentation …/>? 5
 <-- PropertyList -->*
 </cdl:configuration>
 <cdl:system>?
 <cdl:documentation …/>?
 <-- PropertyList -->* 10
 </cdl:system>
 <-- extensibility element -->*
</cdl:cdl>

The optional attribute cdl:cdl/@targetNameSpace specifies the namespace of (1) types 15
defined in the cdl:types element, and (2) names of property lists defined in cdl:configuration
element.
6.1 Types
The cdl:types element encloses data type definitions using some type system (such as
XSD). The configuration description MAY refer to these definitions to declare the type of 20
a property. The namespace of data types within this element is specified at
cdl:cdl/@targetNamespace, which is also the namespace of property lists in the

cdl:configuration element. When the configuration description refers to data types of other
namespaces, the corresponding schema definition SHOULD be specified with a cdl:import
element. Use of schema definition for validation in CDL is optional. 25
6.2 Configuration
The cdl:configuration element describes uniquely named property lists.
6.3 System
The cdl:system element describes a system configuration.
6.4 Import 30
The cdl:import elements are used to refer to external configuration descriptions or schema
definitions with different namespaces.
6.5 Documentation
The cdl:documentation elements are containers for human readable documentation.

7 Configuration Description 35

7.1 Property List Name
A property list is called a top level property list when it is a child of a cdl:configuration
element. A top level property list MUST have a name unique within the document.
Combined with the namespace name specified with cdl:cdl/@targetNamespace, the name is
uniquely referred to with a QName. 40

hiro
<-- PropertyList -->*

hiro
Why it is *zero* or more? If you have no property list, you won't have <cdl:system>.

hiro
properties and property lists

hiro
property lists

hiro
a property.

hiro
a property and a property list.

hiro
property and property list

hiro
property lists

hiro
Although template/prototype does not have "system element," system configuration description should have this. You should explain this here.

hiro
Property List Name

hiro
section title should be "top level property list."

hiro
This sentence should start with "A configuration contains zero or more property list and child of cdl:configuration is called top level property list."

hiro
A property list is called a top level property list when it is a child of a cdl:configuration
element.

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 13

9/22/2005

The following is an example of a configuration description in CDL document. The
children of the cdl:configuration element, WebServer and AppServer are unique names of top
level property lists.

<cdl:cdl targetNamespace="urn:tmp-uri1"> 5
<cdl:configuration>
<WebServer>
 <hostname>www.example.com</hostname>
 <port>80</port>
</WebServer> 10
<AppServer>
 <WebServer …/>
 <hostname …/>
</AppServer>
</cdl:configuration> 15
</cdl:cdl>

Note that a property list which is not top level may not have a unique name.
7.2 Prototype References
7.2.1 Reference Description 20
The @cdl:extends attribute is used in a property list to inherit an existing property list.

<xsd:attribute name="extends" type="xsd:QName" />

The value of the @cdl:extends attribute is the QName of a property list that is to be 25
inherited. Only a top level property list, which has a unique name, MAY be the
destination of a prototype reference. The @cdl:extends attribute MAY appear at any node
that is supposed to have a property list as its value. The following example shows that
@cdl:extends can be attached not only to a top level element but also to its descendants at
the same time. 30

<cdl:configuration xmlns:ext="urn:tmp-uri2">
<a cdl:extends="ext:aTemplate">
 <b cdl:extends="ext:bTemplate">
 <c>100</c> 35
 <d cdl:extends="ext:dTemplate"/>

 <e>200</e>

</cdl:configuration> 40

7.2.2 Reference Resolution
Resolution of a prototype reference consists of inheritance of elements and attributes. Let
a node n have @cdl:extends that refers to a node n’. Resolution of the @cdl:extends attribute is
done as follows: 45
1 If n’ has @cdl:extends, resolve this prototype reference.

hiro
Prototype

hiro
References

hiro
Both "prototype" and "template" are used interchangably thoughout this specification. I recomment you to use only one of these consistently.

hiro
Like page 11, you should say "prototype inheritance." Since readers are easy to confuse "prototype reference" and "value reference," I strongly recommend to use "prototype inheritance" instead of "prototype reference."

hiro
Reference Description

hiro
Inheritance description

hiro
reference.

hiro
MAY

hiro
Why this is "MAY"?

hiro
Reference

hiro
reference

hiro
reference.

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 14

9/22/2005

2 Inherit elements from n’ to n.
3 Inherit attributes from n’ to n.
4 Remove the @cdl:extends attribute from n.
In the following definition, two names are same if and only if they are the same name of
the same namespace. 5
7.2.2.1 Inheritance of Elements
Inheritance of elements from a node n’ to a node n is defined as follows:
1 Let N an empty node list.
2 For each child element e’ of n’ from the first element to the last element:

2.1 If the node n has child elements E = {e1, e2,…} that have the same name as e’ 10
2.1.1 If N does not contain an element that has the same name as e’:

2.1.1.1 For each element ei in E in the document order, append ei to the end
of N. Inherit attributes from e’ to ei.

2.2 Otherwise, append e’ to the end of N.
3 For each child element e of the node n from the first element to the last element: 15

3.1 If the element e’ does not have a child element that has the same name as e,
append e to the end of N.

4 Replace n’s children with the nodes in N.
Note that the above procedure preserves the order of elements in n’ in the resolved list N,
followed by elements not appeared in n’ (if any). 20
<list1>
 <a>1
 2
</list1>
<list2 cdl:extends="list1"> 25
 <c>3</c>
 <a>4
</list2>
A property list list2 in the above example is resolved as follows:
<list2> 30
 <a>4
 2
 <c>3</c>
</list2>
 35
Note also that when n’ has duplicate properties (i.e., properties with the same name), they
are totally replaced with properties with the same name in n (if any).
<list1>
 <a>1
 <a>2 40
 <a>3
</list1>
<list2 cdl:extends="list1">
 <a>4
 <a>5 45
</list2>
A property list list2 in the above example is resolved as follows:

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 15

9/22/2005

<list2>
 <a>4
 <a>5
</list2>

7.2.2.2 Inheritance of Attributes 5
Inheritance of attributes from a node n’ to a node n is defined as follows:
1 For each attribute a’ of the node n’, if the node n does not have an attribute a that has

the same name as a’, insert a’ into the node n. If there is an attribute with the same
name, discard a’.

7.2.3 Resolvable Prototype Reference 10
A prototype reference placed at node n is resolvable if and only if:
• There is one and only one top level property list (i.e., n’ in the above definition)

identified with the value of @cdl:extends. Otherwise, it is an error.
• The node that represents the name of the property list n’ does not have a @cdl:extends

attribute. Otherwise, the prototype resolution MUST be deferred until the prototype 15
resolution of n’.

The following shows an example of a prototype reference that is not resolvable.

<a …/> 20
<b cdl:extends="a" …/>
<c cdl:extends="b" …/>

The prototype reference at the property list c is not resolvable until the prototype
reference at the property list b is resolved. 25
There is no other restriction on resolution order except the above. For example, in the
following description, there is only one restriction: a2 must be resolved before a3.

<a2 cdl:extends="a1" …>
 <b2 cdl:extends="b1" …/> 30
 <c2 cdl:extends="c1" …/>
</a2>
<a3 cdl:extends="a2" …>
 <b2 cdl:extends="b4" …/>
</a3> 35

7.2.4 Example
The following descriptions include examples of inheritance:
 40
<cdl:cdl targetNamespace="urn:tmp-uri1">
<cdl:configuration>
<WebServer>
 <hostname />
 <port>80</port> 45
</WebServer>

hiro
Reference

hiro
reference

hiro
reference

hiro
reference

hiro
reference

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 16

9/22/2005

<Tomcat cdl:extends="WebServer">
 <port>8080</port>
 <maxThreads>200</maxThreads>
</Tomcat> 5
</cdl:configuration>
</cdl:cdl>

<cdl:configuration xmlns:tmpl="urn:tmp-uri1">
<Tomcat cdl:extends="tmpl:Tomcat"> 10
 <hostname>myweb.com</hostname>
</Tomcat>
</cdl:configuration>

These descriptions are resolved as follows: 15

<WebServer>
 <hostname />
 <port>80</port>
</WebServer> 20

<Tomcat>
 <hostname />
 <port>8080</port>
 <maxThreads>200</maxThreads> 25
</Tomcat>

<Tomcat>
 <hostname>myweb.com</hostname>
 <port>8080</port> 30
 <maxThreads>200</maxThreads>
</Tomcat>

Note that the inheritance rule is only applied to immediate child elements (i.e., properties
of the list) and is not applied to descendants of the children (i.e., property values of the 35
list). When a child element is overridden, its value is fully replaced.

<AppPlatform>
 <WebServer>

<hostname>localhost</hostname> 40
<port>80</port>

 </WebServer>
 <ApplicationServer>
 <hostname>localhost</hostname>
 <port>8080</port> 45
 </ApplicationServer>
 <DatabaseServer>
 <hostname>localhost</hostname>
 <port>6000</port>

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 17

9/22/2005

 </DatabaseServer>
</AppPlatform>

<MyApp cdl:extends="AppPlatform">
 <WebServer> 5
 <hostname>www.example.com</hostname>
 </WebServer>
 <ApplicationServer/>
</MyApp>
 10
The property list "MyApp" is resolved to:

<MyApp>
 <WebServer>
 <hostname>www.example.com</hostname> 15
 </WebServer>
 <ApplicationServer/>
 <DatabaseServer>
 <hostname>localhost</hostname>
 <port>6000</port> 20
 </DatabaseServer>
</MyApp>

Note that the value of WebServer/port in the property list AppPlatform is not inherited to the
property list MyApp. In order to allow an inheriting property list to override non-top-level 25
properties in a hierarchy, the description SHOULD use parameterization, which is a
pattern of description with combination of prototype references and value references. See
Section 7.6 for parameterization.
Another way to achieve hierarchical inheritance is placing prototype references
hierarchically. In the following example, because of the prototype reference 30
MyApp/WebServer/@cdl:extends, the value of WebServer/port is inherited to the property list
MyApp.

<WebServer>

<hostname>localhost</hostname> 35
<port>80</port>

</WebServer>

<AppPlatform>
 <WebServer cdl:extends="WebServer"/> 40
 <ApplicationServer>
 <hostname>localhost</hostname>
 <port>8080</port>
 </ApplicationServer>
 <DatabaseServer> 45
 <hostname>localhost</hostname>
 <port>6000</port>
 </DatabaseServer>

hiro
references

hiro
references

hiro
reference

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 18

9/22/2005

</AppPlatform>

<MyApp cdl:extends="AppPlatform">
 <WebServer cdl:extends="WebServer">
 <hostname>www.example.com</hostname> 5
 </WebServer>
</MyApp>

The property list MyApp is resolved as follows:
 10
<MyApp>
 <WebServer>
 <hostname>www.example.com</hostname>
 <port>80</port>
 </WebServer> 15
 <ApplicationServer>
 <hostname>localhost</hostname>
 <port>8080</port>
 </ApplicationServer>
 <DatabaseServer> 20
 <hostname>localhost</hostname>
 <port>6000</port>
 </DatabaseServer>
</MyApp>
 25

7.3 Value References
7.3.1 Reference Description
A reference to a particular property in a document is specified with two global attributes:
@cdl:refroot and @cdl:ref. 30

<xsd:attribute name="refroot" type="xsd:QName"/>
<xsd:attribute name="ref" type="cdl:pathType"/>

They are placed in an element that represents a property without a value (i.e., a leaf node 35
of a tree). Value references MUST NOT be placed in an element that has child elements
whereas prototype reference MAY be placed in such an element to let child elements
inherit from a prototype. Here is an example:

<hostname cdl:refroot="…" cdl:ref="…"/> 40

The @cdl:refroot attribute is optional. The value of @cdl:refroot is the name of a top level
property list (xsd:QName). The value of @cdl:ref is a subset of XPath expression
(cdl:pathType). It MUST be a valid XPath expression, as defined in [XPath], and conform
to the following extended BNF: 45

Path ::= ('/')? Step ('/' Step)*

hiro
i.e., a leaf node
of a tree).

hiro
What a leaf-node and tree mean? property and property list?

hiro
reference

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 19

9/22/2005

Step ::= '.' | '..' | QName

The @cdl:ref attribute specifies a path to the destination of the value reference. The context
information of XPath evaluation is given as follows:
• Let a node n have a @cdl:ref attribute. When the node n has @cdl:refroot: 5

• The root node ('/'): the root of the property list identified with @cdl:refroot.
• The context node ('.'): the root node.

• Otherwise:
• The root node ('/'): the root of the property list that contains the node n.
• The context node ('.'): the parent of the node n. 10

A reference whose path starts with "/" is referred to as an absolute reference. The other
type of reference is referred to as a relative reference. An absolute reference can be
translated to an equivalent relative reference. Let an absolute reference path be placed at
a node n. Let the depth (i.e., the number of steps to the top level element) of the node n be
d. 15
When n does not have @cdl:refroot:
• If d > 1, the equivalent path is:

!!

1

d 2

/.. path

where summation represents concatenation of strings.

• If d = 1, the equivalent path is "." + path. 20
When n has @cdl:refroot, the equivalent path is "." + path.

The following is a configuration example for explanation of path expression. A reference
is placed at a node "i".
 25
<cdl:configuration>
<a>
 <c>
 <g>
 <i cdl:refroot="qname" cdl:ref="xpath"/> 30
 <j><k>1</k></j>
 </g>
 <h>2</h>
 </c>
 <d>3</d> 35

 <e>4</e>
 <f>5</f>
 40
</cdl:configuration>

This XML can be visualized as a tree, as seen in Figure 3. A labeled box with an arrow
pointing at a node shows path expressions to refer to the corresponding node from the
node "i". 45

hiro
destination of the value reference.

hiro
destination property or property list of the value reference

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 20

9/22/2005

cdl:configuration

a b

g h

c e f

i j
@ref

/

“/c/h” or ”../h”

“/c/g/j” or “j”

“/c/g” or “.”

refroot=“b”

refroot=“b”

ref=“/e”

k
“/c/g/j/k” or “j/k”

d

“/d” or ”../../d”

“/c” or “..”

Figure 3: Example of path expression

7.3.2 Resolution
Resolution of a value reference is defined as the following transformation: 5
1 Let n a node that has a value reference (@cdl:ref) to be resolved.
2 Let N the node list that contains nodes identified with the reference.
3 Let N’ an empty node list.
4 For each node ni in N in the document order:

4.1 Create node ni’ with the same name as n. 10
4.2 Copy all child nodes (and their descendants) of ni (i.e., the value of the

property ni) to ni’.
4.3 Copy all attributes (except @cdl:ref and @cdl:refroot) of n to ni’.
4.4 Append ni’ to the end of N’.

5 Replace n with N’. 15
7.3.3 Resolvable Value Reference
A value reference at n referring to n’ is resolvable if and only if:
• Prototype resolutions have been resolved: there is no @cdl:extends attribute at any

descendants or ancestors of either n or n’.
• A @cdl:lazy attribute does not exist where the reference is placed. Otherwise, the 20

resolution is deferred until the resolution of @cdl:lazy.
• The node n’ and its descendants do not have any @cdl:ref and @cdl:lazy attribute.

Otherwise, the resolution is deferred until these @cdl:ref and @cdl:lazy attributes are
resolved.

See Section 7.5 for resolution of @cdl:lazy attributes. 25
7.3.4 Prototype Resolution and Value References
Prototype references (@cdl:extends) MUST be resolved before resolution of value
references.
When a prototype contains absolute references without @cdl:refroot attributes, they MUST
be translated to equivalent relative references before prototype resolution. 30

hiro
references

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 21

9/22/2005

In the following example, a3 extends a, which contains a reference "/b" at d.
<a>
 100
 <c>
 <d cdl:ref="/b"/> 5
 </c>

<a2>
 200
 <a3 cdl:extends="a"> 10
 300
 </a3>
</a2>
The reference "/b" at d must be translated to the equivalent relative reference "../b" when it
is inherited. The result of prototype resolution is as follows: 15
<a2>

200
 <a3>
 300
 <d cdl:ref="../b"/> 20
 </a3>
</a2>
The value of the property d will be 300 after reference resolution.
Note that copying the reference to a3 without translation yields erroneous resolution
result as follows: 25
<a2>

200
 <a3>
 300
 <d cdl:ref="/b"/> 30
 </a3>
</a2>
In this description, the value of the property d will be 200 after reference resolution.

7.3.5 Example 35
The following description includes examples of references.
<cdl:configuration>
<a>
 test
 <c>100</c> 40
 <d>200</d>
 <e>
 <f>abc</f>
 <g>def</g>
 </e> 45

<aa>

hiro
extends

hiro
inherits

hiro
<d cdl:ref="../b"/>

hiro
<c>
<d cdl:ref="../b" />
</c>

hiro
<c>
<d cdl:ref="../b" />
</c>

hiro
<d cdl:ref="/b"/>

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 22

9/22/2005

 <b cdl:refroot="a" cdl:ref="/b" />
 <c>300</c>
 <d cdl:ref="/c" />
 <e>
 <f cdl:refroot="a" cdl:ref="/e/g"/> 5
 <g cdl:ref="/e/f"/>
 </e>
</aa>
</cdl:configuration>
 10
Here, the property list "aa" is resolved as follows:

<aa>
 test
 <c>300</c> 15
 <d>300</d>
 <e>
 <f>def</f>
 <g>def</g>
 </e> 20
</aa>

In the next example, a reference refers to multiple nodes:
<cdl:configuration>
<a> 25
 <portList>

<port>80</port><port>8080</port>
</portList>

 30
 <portList>

<port>8070</port>
<port cdl:refroot="a" cdl:ref="/portList/port"/>

 </portList>
 35
</cdl:configuration>

The property list b is resolved to:

 40
 <portList>
 <port>8070</port><port>80</port><port>8080</port>
 </portList>

 45

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 23

9/22/2005

7.3.6 Expression
A cdl:expression element is a special type of value references and gives a property a
boolean, number, or string value derived from other property values.

<cdl:expression value-of="xsd:string"> 5
 <cdl:variable name="xsd:NCName" refroot="xsd:QName"?

 ref="cdl:pathType" cdl:lazy="xsd:boolean"? />*
</cdl:expression>

The @value-of attribute is an XPath expression that is evaluated to yield a boolean, number 10
or string value. The expression MUST be a valid XPath expression as specified in
[XPath]. It MUST NOT contain any location path. It MAY contain a variable reference,
which is defined with a cdl:variable element.

7.3.6.1 Resolution 15
As a special type of value references, cdl:expression is resolved as follows:
1 For each cdl:variable elements in cdl:expression,

1.1 Identify a node n with @refroot and @ref.
1.2 Bind the children of the node n (i.e., the value of the property n) to the name

specified with @name. 20
2 Evaluate the XPath expression specified as the @value-of attribute with the set of

variable bindings given above.
3 Replace the cdl:expression node with the evaluation result.

7.3.6.2 Example 25
The following is an example use case of a cdl:expression element. An XPath function is
used in the @value-of attribute to concatenate two strings, one of which is given by a
cdl:variable element that refers to the "hostname" property value.

<MyServer> 30
<hostname>www.example.org</hostname>
<url><cdl:expression value-of="concat(’http://’,$host,’/’)">
 <cdl:variable name="host" ref="/hostname"/>
</cdl:expression></url>
</MyServer> 35

It is resolved to:

<MyServer>
<hostname>www.example.org</hostname> 40
<url>http://www.example.org/</url>
</MyServer>

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 24

9/22/2005

7.4 Schema Annotations
A component provider SHOULD describe well-defined data types of properties so that
users of components can provide valid property values. Schema annotations defined as
follows MAY be placed at properties to provide schema information to users. Use of
specified annotations is optional: an implementation of CDL language processor MAY 5
use this information for validation or other purposes (e.g., generation of XML Schema
definition that validates the CDL document itself).
7.4.1 Property Type Declarations
A @cdl:type attribute MAY be placed at a property. The attribute specifies the data type
(schema) of the property. The value of the attribute is a QName that identifies a data type. 10

<xsd:attribute name="type" type="xsd:QName"/>

A @cdl:type MAY refer to either (1) a type defined in the cdl:types in the current CDL
document, (2) a type defined in an external namespace imported with a cdl:import element, 15
or (3) a type defined in an external namespace specified with an /cdl/@xmlns attribute
(such as the Component Model data types and primitive datatypes of XML Schema
defined in [XML Schema Datatype]).
A component provider SHOULD provide data type information on properties with
@cdl:type attributes so that users of components can provide valid values. 20
The following is an example of a property list with @cdl:type specified.

<WebServer>
 <hostname cdl:type="xsd:string"/>
 <port cdl:type="xsd:positiveInteger">80</port> 25
</WebServer>

7.4.2 Property Value Occurrence Constraints
A @cdl:use attribute MAY be placed at a property. The attribute specifies whether the
property requires a value:
• required: The user of the component MUST assign values of this property. 30
• optional: The user of the component MAY assign values of this property.
The default value of @cdl:use is "optional". A component provider SHOULD place @cdl:use
attributes at properties that require values.

<xsd:simpleType name="propertyUseType"> 35
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="required"/>
 <xsd:enumeration value="optional"/>
 </xsd:restriction>
</xsd:simpleType> 40
<xsd:attribute name="use" type="cdl:propertyUseType"/>

The following is an example of a property list with @cdl:use specified.

<WebServer> 45
 <hostname cdl:type="xsd:string" cdl:use="optional"/>

hiro
an implementation of CDL language processor MAY
use this information for validation or other purposes

hiro
an implementation of CDL language processor SHOULD
use this information for validation. It also MAY use such information for other purposes (e.g. ...)

hiro
MUST?

hiro
MAY

hiro
attributes

hiro
attribute with "required"

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 25

9/22/2005

 <port cdl:type="xsd:positiveInteger" cdl:use="required">80</port>
</WebServer>

At the end of all resolution phases, all properties marked as required within a system to be
deployed MUST have values defined. It is an error if any such property remains 5
un-assigned.

7.5 Laziness Annotations
7.5.1 Lazy Value Resolution
In some case, a required property value is not fixed before deployment of the system. A 10
deployment service needs to resolve value references to such values at runtime. A
@cdl:lazy attribute allows a deployment service to defer timing of value reference
resolution.

<xsd:attribute name="lazy" type="xsd:boolean"/> 15

There are two use cases of the @cdl:lazy attribute:
• A lazy property: A property declaration with a @cdl:lazy attribute. Typically, a

component provider specifies a lazy property in a component description.
• A lazy reference: A value reference with a @cdl:lazy attribute. Typically, a user of 20

components specifies a lazy reference in a system description.
Value resolution of a reference to a lazy property or a lazy reference is deferred after the
removal of the @cdl:lazy attribute. This removal of a @cdl:lazy attribute is referred to as
resolution of the @cdl:lazy attribute.
A laziness resolution is defined as resolution of one or more @cdl:lazy attributes at the 25
same time. After a laziness resolution, a value reference resolution MUST be applied to
the document.
Resolution timing and selection of @cdl:lazy attribute to resolve is not defined in the CDL
specification but defined in the component model specification, which defines constraints,
or policies, on ordering of lifecycle management operations on components. A lazy 30
property is resolved (with a property value assigned) when the component is deployed
(semantics and timing of deployment are specified in the component model), and a lazy
reference is resolved when the component is ready to deploy.

7.5.2 Lazy Properties 35
A @cdl:lazy attribute MAY be placed at any property that has no value. A reference to a
property with a @cdl:lazy attribute MUST NOT be resolved before the @cdl:lazy attribute is
resolved.

7.5.2.1 Resolution 40
Resolution of a lazy property is defined as the following transformation:
1 Let a node n has the @cdl:lazy attribute to be resolved
2 Insert a value into the node n if a value is defined
3 Remove the @cdl:lazy attribute at the node n

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 26

9/22/2005

After the resolution, value reference resolution is performed, as described in section
7.3.2.
It is an error if the reference value could not be resolved at the time of lazy property
resolution.
 5
7.5.2.2 Example
In this example, a system consists of two components, server1 and server2. The server2
component requires the port number of the server1 component as the value of a "destination"
property. The "port" property value of server1 is, however, given dynamically at
deployment time. The provider of the server1 component will place a @cdl:lazy attribute at 10
the "port" property to declare that its value is assigned at run time. A value reference to
this property will not be resolved before the resolution of this @cdl:lazy attribute.

<server1>
 <port cdl:lazy="true"/> 15
</server1>
<server2>
 <destination cdl:refroot="server1" cdl:ref="/port"/>
</server2>
 20
When a "server1" component is deployed, the port number of this component is fixed.
Within the CDL document, this event is seen as a laziness resolution that resolves the
@cdl:lazy attribute at the port property as follows:

<server1> 25
 <port>8001</port>
</server1>
<server2>
 <destination cdl:refroot="server1" cdl:ref="/port"/>
</server2> 30

Value reference resolution is done immediately after the laziness resolution. The result of
resolution is as follows:

<server1> 35
 <port>8001</port>
</server1>
<server2>
 <destination>8001</destination>
</server2> 40

7.5.3 Lazy References
A @cdl:lazy attribute MAY be placed at any node that has a @cdl:ref attribute. The reference
represented with the @cdl:ref attribute MUST NOT be resolved before the @cdl:lazy
attribute is resolved. 45

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 27

9/22/2005

7.5.3.1 Resolution
Resolution of a lazy reference is defined as the following transformation:
1 Let a node n has the @cdl:lazy attribute to be resolved
2 Remove the @cdl:lazy attribute at the node n
After the resolution, value reference resolution is performed, as described in section 5
7.3.2.
It is an error if the reference value could not be resolved at the time of lazy property
resolution.

7.5.3.2 Example 10
System environment information is typically represented as a property list with a special
name. In this example, this property list has a QName "sys:systemProperties". Suppose a
property "deploymentTime" requires a time stamp of deployment and a property "time" of the
"sys:systemProperties" property list provides the current time. A @cdl:lazy attribute at the
"deploymentTime" property let an implementation control the timing of value assignment. 15

<deploymentTime cdl:refroot="sys:systemProperties" cdl:ref="/time"
cdl:lazy="true"/>

When a component is deployed, the implementation resolves the @cdl:lazy attribute as 20
follows:

<deploymentTime cdl:refroot="sys:systemProperties" cdl:ref="/time"/>

Value reference resolution is done immediately after the laziness resolution. The result of 25
resolution is, for example, as follows:

<deploymentTime>2004-08-01T10:00:00Z</deploymentTime>

7.6 Parameterization 30
Parameterization is a pattern of configuration description, with which a provider of
description can expose properties, which are located inside of the property list hierarchy,
as top-level properties so that users can override these values with extension.

<server> 35
 <hostname>localhost</hostname>
 <port>4567</port>
</server>

<serverPair> 40
 <host1>localhost</host1>
 <host2>localhost</host2>
 <server1 cdl:extends="server">
 <hostname cdl:ref="/host1"/>
 </server1> 45
 <server2 cdl:extends="server">

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 28

9/22/2005

 <hostname cdl:ref="/host2"/>
 </serer2>
</serverPair>

 5
<myPair cdl:extends="serverPair">
 <host1>one.example.com</host1>
 <host2>two.example.com</host2>
</myPair>
 10

8 System Description
A deployable system is described with the cdl:system element, which contains a property
list. The following is an example of a system description:

<cdl:system> 15
 <WebServer cdl:extends="webserver">
 …
 </WebServer>
 <AppServer cdl:extends="appserver">
 … 20
 </AppServer>
 <Database cdl:extends="database">
 …
 </Database>
</cdl:system> 25

9 Import
The cdl:import is used to refer to external configuration description or schema information
specified with external namespaces which MUST be different from the one specified at
cdl:cdl/@targetNamespace. 30
Multiple namespaces MAY be declared for the same location. The same
namespace/location pair MAY be declared multiple times. However, the same namespace
MUST NOT be declared for different locations. URIs specified in the attributes MUST
be absolute URIs.
An external configuration description to be imported MUST NOT have a cdl:system 35
element.

<xsd:element name="import">
 <xsd:complexType>
 <xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/> 40
 <xsd:attribute name="location" type="xsd:anyURI"
 use="required"/>
 </xsd:complexType>
</xsd:element>
 45

hiro
one or more

hiro
a

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 29

9/22/2005

The algorithm for processing import declarations is as follows
1. All import declarations must be processed before resolution
2. All imported declarations are processed in the order of declaration within their

document.
3. For each import declaration i, with optional namespace namespacei and location urii: 5
4. If the document described by the tuple (namespacei urii) has already been imported,

do nothing
5. If a document with a different URI has already been imported to the namespace, raise

an error.
6. If the document has not been imported into this namespace before, then it should be 10

imported by:
1. Locating the external document

2. Parsing it as another CDL document

3. Resolving any import statements within that document

4. Making the component declarations within the configuration element available for 15
resolution

7. If the document is to be inserted in the current document, that is, the attribute
namespacei is undefined, then all components declared within the configuration element
must be appended to the declarations of the existing configuration element.

The following is a use case example of the cdl:import element: 20

<cdl:import namespace="http://example.com/serverconfig/"

 location="http://example.com/serverconfig.cdl"/>
…
<cdl:configuration xmlns:ex="http://example.com/serverconfig/"> 25
 <MyServer cdl:extends="ex:genericwebserver" …/>
 …
</cdl:configuration>
…
 30

10 Documentation
The cdl:documentation element contains arbitrary text and elements for human or machine
readable documentation.

<xsd:element name="documentation"> 35
 <xsd:complexType mixed="true">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:any processContents="lax"/>
 </xs:sequence>
 <xsd:anyAttribute/> 40
 </xsd:complexType>
</xsd:element>

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 30

9/22/2005

11 Security Considerations
The security requirements are achieved by combining Web Service/Grid/XML security
standards with configuration description. For example, descriptions may be signed and
encrypted. The deployment service must be allowed to decrypt configuration descriptions
in order to process them. Future issues here include security setting when component 5
providers and deployment service providers are different organizations.

12 Editor Information
Junichi Tatemura
NEC Laboratories America, Inc.
10080 North Wolfe Road, Suite SW3-350 10
Cupertino, CA 95014-2515
USA
Email: tatemura@sv.nec-labs.com

13 Acknowledgements
The editor wishes to acknowledge the contributions from many people, including: Steve 15
Loughran, Stuart Schaefer, Peter Toft, Dejan Milojicic, and Takashi Kojo.

Intellectual Property Statement
The GGF takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the 20
technology described in this document or the extent to which any license under such
rights might or might not be available; neither does it represent that it has made any effort
to identify any such rights. Copies of claims of rights made available for publication
and any assurances of licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such proprietary rights by 25
implementers or users of this specification can be obtained from the GGF Secretariat.
The GGF invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights which may cover technology that may be
required to practice this recommendation. Please address the information to the GGF
Executive Director. 30

Full Copyright Notice
Copyright (C) Global Grid Forum (2002-2005). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without 35
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the
GGF or other organizations, except as needed for the purpose of developing Grid
Recommendations in which case the procedures for copyrights defined in the GGF 40

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 31

9/22/2005

Document process must be followed, or as required to translate it into languages other
than English.
The limited permissions granted above are perpetual and will not be revoked by the GGF
or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and 5
THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE." 10

References
[CDDLM] Configuration Description, Deployment, and Lifecycle Management

(CDDLM) Foundation,
http://forge.gridforum.org/projects/cddlm-wg/document/CDDLM_Foundation_Docum
ent/en/1 15

[SF-CDL] Configuration Description, Deployment, and Lifecycle Management (CDDLM)
SmartFrog-based Language Specification,

[Component Model] CDDLM Component Model, CDDLM Working Group Draft, 2005.
[CDDLM-API] CDDLM Deployment API, CDDLM Working Group Draft, 2005.
[RFC2119] Brander, S. Key words for use in RFCs to Indicate Requirement Levels. IETF 20
RFC 2119, March 1997.
[XPath] XML Path Language, James Clark and Steve DeRose, eds., W3C, 16 November

1999. http://www.w3.org/TR/1999/REC-xpath-19991116
[XML Schema Datatypes] XML Schema Part 2: Datatypes, Paul V. Biron and Ashok

Malhotra, eds., W3C, 2 May 2001. 25
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

Appendix A: XML Schema

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 30
targetNamespace="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-
1.0"
 xmlns:cdl="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0"
 elementFormDefault="qualified">
 35
<simpleType name="propertyUseType">
 <restriction base="string">
 <enumeration value="required"/>
 <enumeration value="optional"/>
 </restriction> 40
</simpleType>

<simpleType name="pathType">
 <restriction base="string">
 <pattern value="/|(/)?((\i\c*:)?(\i\c*)|\.|\.\.)(/((\i\c*:)?(\i\c*)|\.|\.\.))*"> 45

hiro
Please add GGF copyright here.

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 32

9/22/2005

 </pattern>
 </restriction>
</simpleType>

<attribute name="refroot" type="QName"/> 5
<attribute name="ref" type="cdl:pathType"/>
<attribute name="extends" type="QName"/>
<attribute name="type" type="QName"/>
<attribute name="use" type="cdl:propertyUseType"/>
<attribute name="lazy" type="boolean"/> 10

<element name="ref">
 <complexType>
 <attribute name="refroot" type="QName" use="optional"/>
 <attribute name="ref" type="cdl:pathType" use="required"/> 15
 <attribute name="lazy" use="optional"/>
 </complexType>
</element>

<complexType name="variableType"> 20
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="refroot" type="QName" use="optional"/>
 <attribute name="ref" type="cdl:pathType" use="required"/>
 <attribute name="lazy" use="optional"/>
</complexType> 25

<element name="expression">
 <complexType>
 <sequence>
 <element name="variable" type="cdl:variableType" 30
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="value-of" type="string" use="required"/>
 </complexType>
</element> 35

<xsd:element name="documentation">
 <xsd:complexType mixed="true">
 <xs:sequence minOccurs="0" maxOccurs="unbounded"> 40
 <xs:any processContents="lax"/>
 </xs:sequence>
 <xsd:anyAttribute/>
 </xsd:complexType>
</xsd:element> 45

<complexType name="anyAttr" abstract="true">
 <sequence>
 <element ref="cdl:documentation" minOccurs="0" maxOccurs="1"/>

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 33

9/22/2005

 </sequence>
 <anyAttribute namespace="##other" processContents="lax"/>
</complexType>

<element name="import"> 5
 <complexType>
 <complexContent>
 <extension base="cdl:anyAttr">
 <attribute name="namespace" type="anyURI" use="optional"/>
 <attribute name="location" type="anyURI" 10
use="required"/>
 </extension>
 </complexContent>
 </complexType>
</element> 15

<element name="types">
 <complexType>
 <complexContent>
 <extension base="cdl:anyAttr"> 20
 <sequence>
 <any namespace="##other" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension> 25
 </complexContent>
 </complexType>
</element>

<complexType name="propertyListType"> 30
 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="cdl:documentation"
 minOccurs="0" maxOccurs="1"/>
 <any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"> 35
 <annotation>
 <documentation>
 This element represents a property (cdl:propertyType).
 </documentation>
 </annotation> 40
 </any>
 </choice>
 <attribute ref="cdl:extends"/>
 <anyAttribute namespace="##other" processContents="lax"/>
</complexType> 45

<complexType name="propertyType">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="cdl:documentation"

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 34

9/22/2005

 minOccurs="0" maxOccurs="1"/>
 <any namespace="##any" processContents="lax"
 minOccurs="0" maxOccurs="unbounded">
 <annotation>
 <documentation> 5
 This element represents a property value.
 </documentation>
 </annotation>
 </any>
 </choice> 10
 <attribute ref="cdl:refroot"/>
 <attribute ref="cdl:ref"/>
 <attribute ref="cdl:extends"/>
 <attribute ref="cdl:type"/>
 <attribute ref="cdl:use"/> 15
 <attribute ref="cdl:lazy"/>
 <anyAttribute namespace="##other" processContents="lax"/>
</complexType>

<element name="configuration"> 20
 <complexType>
 <complexContent>
 <extension base="cdl:anyAttr">
 <sequence>
 <any namespace="##other" processContents="lax" 25
 maxOccurs="unbounded">
 <annotation>
 <documentation>
 This element represents a top level property list
 (cdl:proprtyListType). 30
 </documentation>
 </annotation>
 </any>
 </sequence>
 </extension> 35
 </complexContent>
 </complexType>
</element>

<element name="system"> 40
 <complexType>
 <complexContent>
 <extension base="cdl:anyAttr">
 <sequence>
 <any namespace="##other" processContents="lax" 45
 maxOccurs="unbounded">
 <annotation>
 <documentation>
 This element represents a top level property list

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 35

9/22/2005

 (cdl:propertyListType).
 </documentation>
 </annotation>
 </any>
 </sequence> 5
 </extension>
 </complexContent>
 </complexType>
</element>
 10

<element name="cdl">
 <complexType>
 <complexContent>
 <extension base="cdl:anyAttr"> 15
 <sequence>
 <element ref="cdl:import"
minOccurs="0" maxOccurs="unbounded"/>
 <element ref="cdl:types"
minOccurs="0" maxOccurs="1"/> 20
 <element ref="cdl:configuration"
minOccurs="0" maxOccurs="1"/>
 <element ref="cdl:system"
minOccurs="0" maxOccurs="1"/>
 <any namespace="##other" processContents="lax" 25
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="targetNamespace"
type="anyURI" use="optional"/>
 </extension> 30
 </complexContent>
 </complexType>
</element>
</schema>
 35

Appendix B: Example
This section provides an example of component configuration description and system
configuration description in CDL.
CDL itself does not assume any component model (i.e., required properties, lifecycle
models, etc). This non-normative example here is only for explanation of CDL 40
functionalities, and it does not meant to specify how the component model is represented
in CDL. The normative component model is defined in the CDDLM Component Model
specification [Component Model].
<cdl:cdl
 targetNamespace="http://cddlm.org/component-model-example" 45
 xmlns="http://cddlm.org/component-model-example"
 xmlns:cdl="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0"

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 36

9/22/2005

 xmlns:cmp="http://www.gridforum.org/cddlm/components/2005/02"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<cdl:configuration>
<Component> 5
 <cmp:CodeBase cdl:type="xsd:anyURI"/>
 <cmp:CommandPath cdl:type="cmp:commandPathType"/>
</Component>

<Compound cdl:extends="Component"> 10
 <cmp:CommandPath>com.example.cddlm.Compound</cmp:CommandPath>
 <cmp:Delegate/>
</Compound>
</cdl:configuration>
</cdl:cdl> 15

The element Component is the base template all components will inherit. The component
has two properties: CommandPath and CodeBase. CommandPath is an identifier to specify
what to instantiate in order to realize this deployment component. It can be seen as a
“class” of the component. When a component provider publishes a configurable 20
component, the description can inherit this Component and override CommandPath to specify
the class of the configurable component. CodeBase is an identifier to specify a file (any
content required for the application) to be given to this configurable component. For
example, it refers to an application archive (such as a jar file for Java applications)
installed on the component. 25
The element Compound defines a special utility component that manages other
components as its children. Its implementation will be identified with the value of
CommandPath property (i.e., “com.example.cddlm.Compound”). The Delegate property means
that this component will manage a set of child components on behalf of the system.
Based on the above component templates, a component provider publishes a set of 30
components that are used to run web applications.
<cdl:cdl
targetNamespace="http://example.org/webapp-template"
xmlns="http://example.org/webapp-template"
xmlns:cdl="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0" 35
xmlns:cmp="http://www.gridforum.org/cddlm/components/2005/02"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:c="http://cddlm.org/component-model-example">
<cdl:configuration>
 <DBConnection> 40
 <JNDIName/>
 <hostname/>
 <port/>
 <username/>
 <password/> 45
 </DBConnection>

 <WebServer cdl:extends="c:Component">

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 37

9/22/2005

 <cmp:CommandPath>com.example.cddlm.WebServer</cmp:CommandPath>
 <application cdl:type="xsd:anyURI"/>
 <applicationPath cdl:type="xsd:string"/>
 <hostname cdl:lazy="true"/>
 <port>8080</port> 5
 <dbconnection cdl:extends="DBConnection"/>
 </WebServer>
 <DBServer cdl:extends="c:Component">
 <cmp:CommandPath>com.example.cddlm.DBServer</cmp:CommandPath>
 <data cdl:type="xsd:anyURI"/> 10
 <hostname cdl:lazy="true"/>
 <port>3306</port>
 <username/>
 <password/>
 </DBServer> 15

 <WebApp cdl:extends="c:Compound">
 <cmp:sequence lifecycle="initialization">true</cmp:sequence>
 <cmp:sequence lifecycle="execution">true</cmp:sequence>
 <cmp:reverse lifecycle="termination">true</cmp:sequence> 20
 <application/>
 <applicationPath/>
 <dbname/>
 <data/>
 <dbuser/> 25
 <dbpassword/>

 <DB cdl:extends="DBServer">
 <cmp:CodeBase cdl:ref="/data"/>
 <username cdl:ref="/dbuser"/> 30
 <password cdl:ref="/dbpassword"/>
 </DB>
 <Web cdl:extends="WebServer">
 <cmp:CodeBase cdl:ref="/application"/>
 <applicationPath cdl:ref="/applicationPath"/> 35
 <dbconnection cdl:extends="DBConnection">
 <JNDIName cdl:ref="/dbname"/>
 <hostname cdl:ref="/DB/hostname"/>
 <port cdl:ref="/DB/port"/>
 <username cdl:ref="/DB/username"/> 40
 <password cdl:ref="/DB/password"/>
 </dbconnection>
 </Web>
 </WebApp>
 45
</cdl:configuration>
</cdl:cdl>

hiro
sequence>

hiro
reverse

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 38

9/22/2005

Two components, WebServer and DBServer, extend Component and define additional
properties such as hostname and port. The component user will define component
description that extends these components and provide appropriate values by overriding
properties.
DBConnection is not a component but merely a composite data structure since it does not 5
inherit Component (hence, it does not have properties required to be a component). Such
data structures are defined and extended for convenience.
WebApp is a compound component that consists of two components that extend WebServer
and DBServer. References are specified so that an application on WebServer can connect to a
database on DBServer. Parameterization pattern is effectively used in this definition so that 10
the user of this template only needs to override parameters such as application and
applicationPath by extension. Given those parameter values, properties of sub-components
are appropriately assigned through reference resolution.
By referring to the above component description, a deployment service requester requests
deployment of a web application as follows: 15
<cdl:cdl
targetNamespace="http://example.org/webapp-deploy"
xmlns="http://example.org/webapp-deploy"
xmlns:t="http://example.org/webapp-template"
xmlns:cdl="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0"> 20
<cdl:system>
 <WebApplication cdl:extends="t:WebApp">
 <t:application>http://repository.org/test.war</t:application>
 <t:applicationPath>/test</t:applicationPath>
 <t:dbname>jdbc/Test</t:dbname> 25
 <t:data>http://repository.org/db.zip</t:data>
 <t:dbuser>myapp</t:dbuser>
 <t:dbpassword>pass</t:dbpassword>
 </WebApplication>
</cdl:system> 30
</cdl:cdl>
The above system description is statically resolved as follows:
<WebApplication>
 <cmp:CodeBase/>
 <cmp:CommandPath cdl:type="cmp:commandPathType"> 35
 com.example.cddlm.Compound</cmp:CommandPath>
 <cmp:Delegate/>
 <cmp:sequence lifecycle="initialization">true</cmp:sequence>
 <cmp:sequence lifecycle="execution">true</cmp:sequence>
 <cmp:reverse lifecycle="termination">true</cmp:sequence> 40
 <t:application>http://repository.org/test.war</t:application>

<t:applicationPath>/test</t:applicationPath>
 <t:dbname>jdbc/Test</t:dbname>
 <t:data>http://repository.org/db.zip</t:data> 45
 <t:dbuser>myapp</t:dbuser>
 <t:dbpassword>pass</t:dbpassword>
 <t:DB>

hiro
reverse

hiro
sequence>

hiro
<t:applicationPath>/test</t:applicationPath>

hiro
adjust indentation

GWD-R (draft-ggf-cddlm-xml-cdl2-002.doc)

cddlm-wg@ggf.org 39

9/22/2005

 <cmp:CodeBase cdl:type="xsd:anyURI">
 http://repository.org/db.zip</cmp:CodeBase>
 <cmp:CommandPath cdl:type="cmp:commandPathType">
 com.example.cddlm.DBServer</cmp:CommandPath>
 <t:hostname cdl:lazy="true"/> 5
 <t:port>3306</t:port>
 <t:username>myapp</t:username>
 <t:password>pass</t:password>
 </t:DB>
 <t:Web> 10
 <cmp:CodeBase cdl:type="xsd:anyURI">
 http://repository.org/test.war</cmp:CodeBase>
 <cmp:CommandPath cdl:type="cmp:commandPathType">
 com.example.cddlm.WebServer</cmp:CommandPath>
 <t:applicationPath cdl:type="xsd:string">/test</t:applicationPath> 15
 <t:hostname cdl:lazy="true"/>
 <t:port>8080</t:port>
 <t:dbconnection>
 <t:JNDIName>jdbc/Test</t:JNDIName>
 <t:hostname cdl:ref="../../t:DB/t:hostname"/> 20
 <t:port>3306</t:port>
 <t:username>myapp</t:username>
 <t:password>pass</t:password>
 </t:dbconnection>
 </t:Web> 25
</WebApplication>
Note that the reference at WebApplication/t:Web/t:dbconnection/t:hostname has not been
resolved since it refers to a lazy property, WebApplication/t:DB/t:hostname. A runtime system
is supposed to resolve this reference in deployment time.

