
GWD-E Dominic Battré, TU Berlin (Editor)
GRAAP-WG Philipp Wieder, TU Dortmund University (Editor)
 Wolfgang Ziegler, Fraunhofer SCAI (Editor)

September 10, 2009

WS-Agreement Specification Version 1.0 Experience Document

Status of This Document
This document provides information to the Grid, Distributed Systems and
Cloud Computing community about the experience with the WS-Agreement
Specification Version 1.0. In describes existing implementations of the
standard and compares them. It does not define any standards or technical
recommendations. Distribution is unlimited.

Copyright Notice
Copyright © Open Grid Forum (2008, 2009). All Rights Reserved.

Trademark
OGSA is a registered trademark and service mark of the Open Grid Forum.

Abstract
This document describes the implementation experiences of independent
implementations of WS-Agreement along with an overview of the projects that
have implemented WS-Agreement so far. It also presents the features of WS-
Agreement used by 8 of the implementations. Finally, the document contains
information on set-up and results of an experiment where two independent
implementations of WS-Agreement were used to mutually exchange
templates describing jobs and create agreements.

GWD-E Dominic Battré, TU Berlin (Editor)
GRAAP-WG Philipp Wieder, TU Dortmund University (Editor)
 Wolfgang Ziegler, Fraunhofer SCAI (Editor)

August 30, 2009

graap-wg@ggf.org 2

Contents
1.	 Introduction.. 3	
2.	 Notational Conventions ... 3	
3.	 WS-Agreement: Status Quo .. 4	

3.1	 Rationale for Writing this Document ... 4	
4.	 Projects Implementing WS-Agreement ... 5	

4.1	 AgentScape .. 5	
4.2	 Akogrimo .. 6	
4.3	 ASKALON... 8	
4.4	 AssessGrid ... 8	
4.5	 BEinGRID... 11	
4.6	 BREIN... 13	
4.7	 CATNETS... 14	
4.8	 Umeå University ... 14	
4.9	 SmartLM... 16	
4.10	 VIOLA/PHOSPHORUS/IANOS .. 17	

5.	 Constructs used in WS-Agreement – An Analysis 18	
5.1	 Introduction... 18	
5.2	 Top level Agreement-element .. 18	
5.3	 Context-element ... 19	
5.4	 Terms ... 20	
5.5	 Templates... 26	
5.6	 Agreement States... 28	
5.7	 Service Run-time States... 28	
5.8	 Guarantee States ... 29	
5.9	 Port Types .. 29	

6.	 WSAG4J – A Generic WS-Agreement Framework 31	
7.	 Interoperation Testing based on the AssessGrid and the VIOLA
Implementations... 35	
8.	 Conclusions ... 37	
9.	 Contributors ... 39	
10.	 Glossary .. 40	
11.	 Intellectual Property Statement ... 42	
12.	 Disclaimer.. 42	
13.	 Full Copyright Notice ... 42	
14.	 References .. 43	
15.	 Appendix A – Example SLA Templates & Agreements......................... 44	

GWD-E August 30, 2009

graap-wg@ggf.org 3

1. Introduction
This document describes the implementation experiences of independent
implementations of WS-Agreement along with an overview of the projects that
have implemented WS-Agreement so far presented in Section 4. Moreover, it
also presents the features of WS-Agreement used by 8 implementations
where the projects replied to survey organised in 2008. The results of the
survey are summarised in Section 5. This section also contains embedded
comments related to further issues with the specification identified by the
different implementations and reported in the responses to the survey.
Section 6 presents WSAG4J a generic WS-Agreement framework
implemented in Java, currently the most complete implementation of the WS-
Agreement specification.
Additionally, the document contains information on the set-up and results of
an experiment where two independent implementations of WS-Agreement
were used to mutually exchange templates describing jobs and create
agreements based on these. This description can be found in Section 7.
The document concludes with a discussion of areas, where extensions of the
specification will be carried out in the future, namely extending the capabilities
of the WS-Agreement negotiation protocol.

2. Notational Conventions
The key words ‘MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL”
are to be interpreted as described in RFC 2119 [BRADNER1].

GWD-E August 30, 2009

graap-wg@ggf.org 4

3. WS-Agreement: Status Quo

3.1 Rationale for Writing this Document
The authors and contributors of the WS-Agreement specification deliberately
kept the specification as generic as possible to allow for flexibility in
implementations of the language and the protocol for describing and creating
service level agreements, thus enabling a broad range of application areas.
Therefore, WS-Agreement itself does not specify a domain specific term
language but allows users to plug-in their own domain specific term
languages to describe the terms of a service. Both properties guarantee that
WS-Agreement may be used in arbitrary environments, however, render
interoperability difficult.
Since the publication of the proposed recommendation in May 2007, the
number of known implementations of WS-Agreement has been growing
continuously. Depending on the context of the implementation, the different
implementations have different foci and consequently use different features of
WS-Agreement. Moreover, these implementations use different hosting
environments for the web services, which adds another barrier for
interoperation. The GRAAP-WG therefore decided to produce an experience
document that covers more than the usual topics. The main parts of this
document provide both, a brief presentation of most of the projects that have
implemented WS-Agreement, and a description of the WS-Agreement
constructs used in these implementations. The latter has been created based
on the responses to a questionnaire that has been sent to all projects.
To address the interoperation issues, the document also contains a section
describing the interoperation experiment carried out with the implementation
of the AssessGrid project and the implementation of the WSAG4J framework
in the PHOSPHORUS project. Both projects employ the Job Submission
Description Language (JSDL) as term language but use different hosting
environments for WS-Agreement.
Finally, to further reduce the complexity of using WS-Agreement and for
lowering the threshold for interoperability, the GRAAP-WG has started
working on profiles for WS-Agreement that reflect general use-cases. These
profiles along with the specific term languages will be published in a separate
informational document.

GWD-E August 30, 2009

graap-wg@ggf.org 5

4. Projects Implementing WS-Agreement
This section provides an overview of the projects, which have implemented
the WS-Agreement Specification Version 1.0 [GFD.107]. A list of all reported
implementations (as 2007) can be found here [SOZ+07] and here [PBM08] or
visit the up-to-date list maintained by the GRAAP-WG at
https://forge.gridforum.org/sf/wiki/do/viewPage/projects.graap-
wg/wiki/Implementations.
As presented below, the implementations spread across the most common
Grid middleware stacks: GT4.x, UNICORE and GRIA. Some of the
implementations don’t rely on Grid middleware, like e.g. the AgentScape
implementation.
In most of the projects WS-Agreement is used in the context of Resource
Management and Scheduling, use-cases being job submission, resource
selection based on requirements of a user, e.g. through an auction, advance
reservation and agreement on QoS.
Nine of the projects listed below (AgentScape, Akogrimo, ASKALON,
AssessGrid, BEinGRID, BREIN, CATNETS, JSS, VIOLA) use independent
implementations without sharing code (except for publicly available WS-*
libraries for, e.g. notification or security) while three are using different
versions of the WSAG4J framework evolved over the last years (SmartLM,
PHOSPHORUS, IANOS). Thus, this experience document describes twelve
implementations whereof three are using different versions of the same
framework.
In general, the implementations follow the description for the expected
behaviour of the service entities (agreement providers and agreement
consumers). In all implementations the agreement provider is also the
resource provider (or an entity acting on its behalf), while the agreement
consumer is the end-user (or an entity acting on its behalf, e.g. a Grid level
scheduler or an agent).
Up to now, mostly Java is used for implementing web-service stacks in Grid
environments. We are not aware of implementations in other languages.
Since we do not have control over other implementations than those we drive
ourselves, we can only speculate regarding the reason for this. As far as we
are concerned, the reason using Java is the bounding of WS-Agreement to
web services and the implicated need for proper tooling which is best
provided for Java.

4.1 AgentScape
Name: AgentScape Negotiation Framework
Category: Framework
License type: BSD-like (no attribution)
Link: http://www.agentscape.org/index_html
Description: The Intelligent Interactive Distributed Systems (IIDS) group of the
Vrije Universiteit Amsterdam develops the AgentScape framework that

GWD-E August 30, 2009

graap-wg@ggf.org 6

provides mobile agents access to computing resources on heterogeneous
systems across the Internet.
AgentScape is an agent platform that provides middleware infrastructure
needed to support mobility, security, fault tolerance, distributed resource and
service management, and service access, to heterogeneous agent
applications. The multi-level AgentScape middleware infrastructure has been
designed to be extensible and scalable. Within AgentScape, agents are active
entities that reside within locations, and services are third-party software
systems accessed by agents hosted by the AgentScape middleware. Agents
in AgentScape can communicate with other agents and migrate from one
location to another.
AgentScape uses WS-Agreement to manage all negotiations between agents
and locations and between agents and external web services. WS-Agreement
is used to determine the resources that an agent will be allowed to access
when it has migrated to a new location. These leases are negotiated before
migration and enforced when the agent arrives at the new location.
Grid ecosystems: The negotiation of resource access for applications is based
on WS-Agreements. A mediator called domain coordinator (DC) in
AgentScape represents multiple autonomous hosts and communicates with
the mobile agent on behalf of these nodes. Agents can negotiate their options
with DCs of multiple domains, being able to select the DC that provides the
best offer.
WS-Agreement implementation: WS-Agreement is used to negotiate
conditions and quality of service of resource access with domain coordinators.
Hosts providing resources are aggregated into virtual domains. The DC
represents the hosts within a virtual domain in the negotiation process. The
WS-Agreement interaction model is extended to allow a more sophisticated
negotiation. In this extended negotiation model, hosts provide an agreement
interface to their DC. The DC aggregates templates offered by hosts into
composed templates and makes these available to agents. The DC receives
the agreement requests made by agents based on composed templates. The
DC then negotiates an agreement with the hosts with the requested
resources. The additional accept/reject interaction sequence allows agents to
enter into negotiations with multiple providers and compare received offers.
Resources that can be requested and used by agents include CPU time,
communication bandwidth, amount of memory, disk space, web services that
the agent is allowed to access and the number of calls of a web service that
the agent is allowed to do. After the negotiation phase, a host manager
monitors and controls the resource usage to ensure that agreements are met.

4.2 Akogrimo

Name: Akogrimo SLA sub-system
Category: A SLA architecture based on Web Services
License type: Dual License (similar to LGPL for academic usage)
Link: http://www.akogrimo.org

GWD-E August 30, 2009

graap-wg@ggf.org 7

Description: More information is available in the “Final Implementation Report
of Grid Application Support Service layer” deliverable, available in the
Download/Material section of the Akogrimo website1. In order to support
business applications in a mobile Grid computing environment, the link
between the service that presents to the Grid Middleware and the underlying
network has to be efficient, in order to support efficient implementation of
monitoring, negotiation and service management. Central to this achievement
is the SLA Management subsystem at Grid Middleware layer that has to
encompass and mirror the SLA subsystem at Network layer including contract
definition, SLA negotiation, SLA monitoring and SLA enforcement according
to defined policies. In order to join the two SLA layers the main point is to
build a new sub layer upon the Grid middleware able to create a negotiation
mechanism between providers and consumers of services. In addition, the
middleware SLA Enforcement and monitoring subsystems have also the
supervisor role in order to verify that the negotiated contract conditions of all
running services are met. In order to combine the two layers and in particular
to handle service change at the network layer notification is needed.
In Akogrimo the WS-Notification specification is implemented for alerting
about abnormal situations so that SLA Management can undertake effective
corrective decisions according to defined policies. This tight coupling based
around negotiation allows the Grid middleware to become aware of network
capabilities aiding efficient cross layer co-operation. A clear example is shown
in the management of the Quality of Service. The SLA contract and its
negotiation consider QoS parameters that belong to both grid resources (CPU
use, Memory, Disk space, etc) and network capabilities (bandwidth, priorities
for packet traffic, etc) by means of network bundles or profiles that telecom
operators provide. Thus, the application’s QoS requests are mapped on these
infrastructure QoS parameters.
This novelty is completed with the close interactions between network and
grid at runtime. Thus, any changes on network performance are taken into
account by the process that is responsible for the monitoring of QoS
parameters and corrective actions and penalties can be applied according to
the defined policy in a per-case basis. This management of SLA with respect
to QoS illustrates how in the new “Next Generation Grid architectures” SLA is
handled as a live adjustable quantity. Here the SLA management is well
supported aiding flexibility and adaptability in order to manage externally
hosted services toward a combined business goal.
When a Customer asks for an Agreement (step 1) to an “Agreement
Provider”, it retrieves information related to the chosen service (interacting
with a Discovery Information Service, step 2). This information takes the form
of High Level (HL) SLA Template about the service that takes into account
some “Human Understandable” QoS values. These values are afterwards
translated according to a mapping policy to the respective “low level” (LL)
QoS parameters, which are transparent to the final user and are the actual
measurable grid and network properties, which are monitored in run-tine (step
3). Then the real negotiation phase starts: the HL SLA Template contains
information related to the LL SLA Template that contains the low level

1 http://www.akogrimo.org/modules.php?name=UpDownload&req=viewdownload&cid=5

GWD-E August 30, 2009

graap-wg@ggf.org 8

requirements to negotiate (step 4). Finally, the Application Provider interacting
with the Infrastructure Layer, looks for the best suitable host (step 5) that is
able to deliver the Application taking into account “well defined” low level QoS
parameters. If the negotiation is successfully, the two contracts, HL and LL,
are prepared and stored in the Agreement Repository (step 5).

Grid ecosystems: A Customer relies on an Application Provider, which in turn
relies on an Infrastructure provider. The User requests a high-level SLA to the
Application provider (Gold, Silver or Bronze), which describes the service to
be accessible by the user. The Application Provider requests a low-level SLA
to the Infrastructure Provider, which defines the resources that are needed for
the application execution.

4.3 ASKALON
Name: ASKALON GridARM
Category: Framework
License type: Dual license model (commercial & open source), defined by the
ASKALON Project
Link: http://www.dps.uibk.ac.at/projects/askalon/
Description: ASKALON is a Grid project of the Distributed and Parallel
Systems Group at the University of Innsbruck. The main goal is to simplify the
development and optimisation of applications that can utilise a Grid for
computation. ASKALON is used to develop and port scientific applications as
workflows in the Austrian Grid project. The developers designed an XML-
based Abstract Grid Workflow Language (AGWL) to compose job workflows.
Grid ecosystems: A resource manager remotely deploys software e.g. by
using the Globus Toolkit middleware with the GridFTP protocol and the
Globus Resource Allocation Manager (GRAM).
WS-Agreement implementation: SLAs can be made with the Grid resource for
a specified timeframe by using the GridARM Agreement package. GridARM
ensures that a defined capacity and capability is available in the agreed
timeframe including parameters like number of CPUs. The agreement
management consists of two parts: The AgreementNegotiator and the
AgreementService. The AgreementNegotiator works as an agreement factory
service. During the agreement negotiation process with the client, multiple
agreement offers are created based on the information provided by the client
as an AgreementTemplate. The client can accept one or more of the offers or
reject all of them. The AgreementService manages particular agreements.
After the negotiation process is finished all interaction addressing e.g.
agreement access and updates is done by interacting with the
AgreementService using an End Point Reference (EPR). In ASKALON, the
client (consumer) always creates agreement templates and is therefore
always the agreement initiator. The provider creates one or more offers which
are accepted or rejected by the client.

4.4 AssessGrid
Name: AssessGrid Negotiation Manager

GWD-E August 30, 2009

graap-wg@ggf.org 9

Category: Generic SLA Framework
License type: Apache Licence 2.0
Link: https://cit-server.cit.tu-berlin.de/trac/negmgr/wiki
Description: AssessGrid is a European project, which started in April 2006
and ended in March 2009. AssessGrid introduces risk management and
assessment to Grid computing to facilitate a wider adoption of Grid
technologies in business and society. Risk assessment helps providers to
make decisions on suitable SLA offers by relating the risk of failure to penalty
fees. Similarly, end-users get knowledge about the risk of an SLA violation by
a resource provider that helps to make appropriate decisions regarding
acceptable costs and penalty fees. A broker is the matchmaker between end-
users and providers. The broker provides a time / cost / risk optimised
assignment of SLA requests to SLA offers.
Grid ecosystems: The Negotiation Manager provides access to a distributed,
planning based RMS called Open Computing Center Software (OpenCCS,
see www.openccs.eu). The Negotiation Manager is embedded in a Globus
Toolkit 4 (GT4) environment and makes heavy use of GT4 components for
WS-SecureConversation (encryption, authorization, and authentication), WS-
Notification, credential delegation, and GridFTP for file-staging. The
Negotiation Manager consists of a generic component that can be used by
new projects and a concrete extension that is suited for planning based RMS.
Currently, the OpenCCS scheduler is supported but support for further
schedulers can be implemented through a plug-in concept. Jobs are
described in the form of JSDL, JSDL-POSIX and JSDL-SPMD.
WS-Agreement implementation: The Negotiation Manager manages the life-
cycle of a compute job, comprising negotiation for price, penalty and
guarantee probability of failure boundaries, communication with the underlying
RMS, performing file staging, monitoring the execution progress, and
providing status information in a WS-Agreement compliant way.
The Negotiation Manager provides access to the RMS over WS-Agreement.
The major negotiable SLA parameters are: General parameters like number
of nodes, amount of memory, job runtime, deadline for job completion, and
guaranteed probability of failure boundaries. An optional quote mechanism
(invitation to treat) allows requesting price information for not yet agreed SLAs
without being binding for either party. This is useful for co-allocation and
workflows. Special cancellation policies allow for cheap cancellation of SLAs
during the first few minutes of their existence (also useful for the mentioned
problems). After receiving the necessary delegated credentials, the
negotiation manager performs file staging from a users’ GridFTP directory
onto a cluster and notifies the RMS that computation may commence. During
the computation, the RMS is monitored and in case an SLA cannot be fulfilled,
the Negotiation Manager attempts to subcontract another provider for the job
execution (by resuming a generated checkpoint or by restarting the job).
Besides the Negotiation Manager on the provider layer, another
implementation exists in the broker layer. This Broker deals with reputation
management and meta-scheduling for workflows. A user can create an SLA
with a broker, which may subcontract one or several providers to execute a

GWD-E August 30, 2009

graap-wg@ggf.org 10

single job or an entire workflow. AssessGrid provides a user interface based
on Gridsphere to modify parameters of the SLA template, to negotiate, to
submit SLA requests, and to monitor them. A second user interface exists in
the form of a command line tool, which provides comparable features.
Generic WS-Agreement implementation: The Negotiation Manager consists of
two software components. The first component comprises a generic
implementation of WS-Agreement that can be used by various projects which
decide to use the Globus Toolkit as a hosting environment. The second
component comprises a concrete, domain specific implementation beyond the
scope of pure WS-Agreement that supports features needed for AssessGrid.
The generic component, the Negotiation Manager framework, contains an
Apache Ant based build system that performs stub generation and package
compilation, assembly, and deployment. The build system uses inheritance of
WSDL Port Types as supported by the Globus Toolkit WSDL pre-processor
such that concrete implementations can freely extend the WS-Agreement
port-types and resource properties documents by custom features. This has
been used for example to add a quote (invitation to treat) mechanism and a
mechanism to delegate credentials to a provider. Furthermore, the package
system is designed so that several AgreementFactory instances can live
within a single Globus Toolkit hosting environment.
The framework component provides furthermore authentication and
authorization of users over distinguished names and WS-
SecureConversation. Three user groups exist (administrators, SLA owners,
and SLA users) with different access privileges (read/write access to all SLAs,
read/write to specific SLAs, and read only to specific SLAs respectively). This
is important because a third party might need the privilege to monitor an SLA
while not possessing the privilege to terminate it. By default only the creator of
an SLA may access it.
Templates are stored in a relational database. They can be queried but also
modified over WS-ResourceFramework mechanisms that respect access
privileges. The template store and also individual agreements can be
monitored using WS-Notification mechanisms. This allows a broker for
example to be notified of new templates or a provider to wait for the
finalization of an outsourced SLA.
During the creation of an agreement, the Negotiation Manager tests
agreement offers against the creation constraints and rejects offers that
violate those. The test for compliance does not yet support the full set of
constraints proposed by WS-Agreement. Simple numeric comparisons (e.g. to
restrict the number of processors requested) and string comparisons for
enumerations (e.g. to request a specific operating system) are supported as
of now.
Several features were considered too domain specific to be included in the
Negotiation Manager framework and have been pushed up into the Assess
Grid specific implementation. These can be easily extracted and copied into
new projects. Example for such features are:

• Persistence of SLA instances
• Credential Delegation

GWD-E August 30, 2009

graap-wg@ggf.org 11

• An asynchronous state-machine that reacts upon events (stemming
from a RMS or triggered by wall clock time) by transitions or operations
(e.g. a file staging operation can be triggered at a certain point in time
or because the RMS has finished a computation)

• Cancellation Policies that describe a cancellation fee of an SLA at a
certain point in time and guarantee over time monotonously increasing
cancellation fees

• Rejection reasons for rejected SLA requests
• Helper classes to conveniently modify xs:any tags
• A quote (invitation to treat) mechanism to request prices and the

availability of resources without creating a binding agreement.
• Client

For details we refer to AssessGrid Deliverable D4.2, which is available from
www.assessgrid.eu.

4.5 BEinGRID
Name: BEinGRID Negotiation Manager
Category: Component provided as a Web Service – and architecture based
on Web Services
License type: Apache V2
Link: https://gforge.beingrid.eu/gf/project/slanegotiator

See also https://gforge.beingrid.eu/gf/project/sla4gt4/ for a complete
SLA framework supporting WS-Agreement (March 2007 specification)

Description: BEinGRID – Business Experiments in Grid - is an ICT FP6
project of initially 75 partner organisations. The main objective of BEinGRID is
to foster the adoption of Grid technologies for businesses and thereby
crossing the chasm between the early market dominated by few visionary
customers and the mainstream market dominated by a large number of
pragmatic customers.
The BEinGRID project released 25 so called Grid Business experiments
(BEs). Based on a clear business case, each BE developed a prototypic
implementation for their specific requirements. Several BEs required SLAs,
and provided a support for requirement analysis, which we hope has been
wide enough. The obligation to accommodate different needs produced a
generic architecture for SLAs, which accommodates SLA Negotiation, SLA
Evaluation, SLA accounting, as well as scheduler optimization through SLAs.

Grid ecosystems: One of the BEinGRID SLA analysis lines followed the BEs
that were based on GRIA (a service-oriented infrastructure designed to
support B2B collaborations). These use a different SLA specification and are
not developed in this document. On the other hand, three different BEs
decided to use SLAs in their Globus Toolkit 4 environment. One dealt with
Mobile Fraud Management, another with dynamic capacity markets, and the
last one targeted eHealth. They are described below.

GWD-E August 30, 2009

graap-wg@ggf.org 12

BEinGrid BE20 – Mobile Fraud Management

A central Fraud Management System (FMS) offers its fraud detection and
management services to a group of mobile network operators (MNO). When
an operator joins the group and wishes to use the FMS, new accounts for
their Fraud Analysts and FMS manager are created for this operator. The
FMS administrator needs to configure the different subsystems for the new
operator (data management and data federation parameters, and other). The
MNOs negotiate a Service Level Agreement with the FMS system, in order to
regulate the QoS (availability, response time), which will be provided as well
as protection and coverage guarantees. The established SLA contract will be
later monitored to ensure its fulfilment, and it could be dynamically re-
negotiated by the operators.
The main purpose of the SLA is to set the DataFederation information
(included in one of the Service Description Terms (SDT)). Also, at negotiation
time it is checked that the consumer server is accessible (what we call
“Consumer Obligations”), but that check is only done at negotiation time. The
telecom operators and the fraud management system have a high-level,
legally binding contract, which is the one which actually regulates their
business relationship.

BEinGrid BE22 – Agrogrid

AgroGrid develops and implements a full life-cycle solution for dynamic
capacity markets, mainly supply chain companies in the European food and
agriculture industry.
Traditionally, companies in the agricultural sector operate in business
structures with long-term contract relations. To react on unexpected or
unplanned changes in supply and demand of capacities, the BE enables
companies to deploy their capacities extensively and, simultaneously, to
ensure food safety via efficient tracking & tracing of goods and automated
SLA-Monitoring & Evaluation.
The SLA-Negotiation is provided to the user through a portlet (based on
gridsphere) inside the AgroGrid portal. It serves as frontend to the BEinGRID
SLA-Negotiator implementation, which allows negotiation of SLAs between
capacity requester and provider (delivery of food between food-provider and
food-consumer).

BEinGrid BE25 – Business Experiment in enhanced Intensity-Modulated
Radiation Therapy (IMRT) planning using Grid services on-demand
(BEinEIMRT)

BEinEIMRT provides on-demand e-Health computational services to Health
organisations like clinics and hospitals. The health organisations produce
medical images, and rely on BEinEIMRT for services like tumor detection and
radiotherapy planning. All services are provided by the Centro de

GWD-E August 30, 2009

graap-wg@ggf.org 13

Supercomputación de Galicia (CESGA), which is the customary provider.
CESGA has a set of computational resources on which to execute the
submitted tasks. When CESGA is under peak demand, its resources cannot
match the QoS, which has been signed in a framework agreement. To comply
with this contract, an external resource provider is contacted. External
resources are then added for a limited time period to the CESGA
infrastructure, so the framework SLAs can be respected. The extra resources
are needed on a short period (several hours to a maximum of a week). The
external resources are obtained through the signature of an SLA with the
external provider, using the BEinGRID SLA Negotiator component.
The negotiation is automatic and performed by the scheduler (GridWay),
within the limits of the preSLAs the administrator has defined according to the
framework agreement with the external provider. Furthermore, the CESGA
administrator can configure some additional parameters about the terms and
conditions of the negotiation.

4.6 BREIN
Name: SLA Negotiation
Category: Component in a SLA Management Framework
License type: LGPL
Link: http://www.eu-brein.com/
Description: Brein is a European project. It provides an e-business concept
developed in recent Grid research, namely the concept of so-called "dynamic
virtual organisations" towards a more business-centric model, by enhancing
the system with methods from artificial intelligence, intelligent systems,
semantic web etc. Thus, the BREIN project will enable business participants
to easily and effectively use Grid technologies for their respective business
needs.
Grid ecosystems: The SLA management Framework is based on Globus
Toolkit 4 enviroment and apply the GT4 components for WS-Notifcation,
object serialization.
WS-Agreement implementation: In general, SLA Management components
are based on the WS-Resource design pattern, because the component was
implemented as GT4 Java WS Core service, which in turn allows the
implementation of stateful services as defined by WS-RF. The SLA contracts
are based on WS-Agreement specification, which defines schemas for SLA
Templates.
SLA Negotiation provides two main functionalities. One is to manage
Templates, which include the task of creating SLA Templates, storing the
Templates in a repository and retrieve the templates. The implementation of
the interfaces is suggested by WS-Agreement. The other functionality is to
compare the received offers and provide the best bid to the customer.
After the negotiation, the SLA Manager will start the monitors and supervise
the resource usage in order to make sure, if the agreements are met.

GWD-E August 30, 2009

graap-wg@ggf.org 14

4.7 CATNETS
Name: Catallaxy paradigm for decentralized operation of dynamic application
networks
Category: Agent-based framework for service markets
License type: Open Source, license defined by the CATNETS project
Link: http://www.catnets.uni-bayreuth.de/
Description: CATNETS is a project of several universities and research
centers across Europe with the objective to determine the applicability of a
decentralized economic self-organization mechanism for resource allocation
in application layer networks (ALN), which include Grid systems. The name
CATNETS is based on an economic self-organization approach of a free
market, the Catallaxy. CATNETS simulates the ALN environment by an
economy, where the resources are for example processor time or storage
space, while the economic actors are computers or web services. The
application service and compute resource allocation of Application Layer
Networks is broken down into two types of interrelated markets: A Grid
resource market, where computational and data resources are traded and a
service market where application services are traded. These services provide
particular application functionality, e.g. query execution or molecule docking.
In these separate markets complex services buy basic services, which buy
raw resources. In this Catallaxy approach, the market is self-organizing which
means that no centralized broker is required.
Grid ecosystems: In the prototype implementation the middleware is
implemented as a set of simple specialised agents using the light-weight
agents platform of the Decentralised Information Ecosystem Technologies
(DIET) project. The agents provide for example access to markets,
negotiations, object discovery and communication. The management of local
resources is based on the WS-Resource Framework offered by Globus
Toolkit 4. Middleware is further implemented using JXTA technology.
WS-Agreement implementation: WS-Agreement is used in the implementation
of both the service market and the resource market. CATNETS defines
separate bidding language for the service and the resource market, which are
used by agents to submit bids for services or resources. These languages are
mapped onto WS-Agreement via domain-specific schemes. The offers are
encoded in XML using WS-Agreement and JSDL. In the resource market
basic services can submit sell orders to the order books with WS-Agreement
and the resource services can submit buy orders to the order books. After
submission of all bids to the auctioneer, the allocation and the corresponding
prices are determined, which results in an agreement. The activity on the
service market is quite similar. The WS-Agreement implementation of
CATNETS is technically integrated into the Triana workflow engine, which
allows visualisation of Agreement Templates and Offers. It also enables the
workflow to be paused until an Agreement Offer has been confirmed.

4.8 Umeå University
Name: Job Submission Service (JSS)
Category: Scheduling & Resource Management framework

GWD-E August 30, 2009

graap-wg@ggf.org 15

License type: Apache License, Version 2.0
Link: http://www.cs.umu.se/research/grid/jss/index.html
Description: JSS developed at the Umeå University is a broker aiming at
identifying the set of resources that minimizes the Total Time to Delivery
(TTD), or part thereof, for each individual job submission. In order to do this,
the broker makes an a priori estimation of the whole or parts of the TTD for all
resources of interest before making the selection. The TTD estimation
includes performing benchmark-based execution time estimations, estimating
file transfer times, and performing advance reservations of resources in order
to obtain a guaranteed batch-queue waiting time. For resources not providing
all information required or a reservation capability, less accurate estimations
are performed. On the Grid resource, an authorization callout mechanism is
used to validate that (i) the requested reservation identifier exists and (ii) the
reservation actually was created by the same user that submits the job. JSS is
currently used e.g. in NorduGrid and Swegrid.
Grid ecosystems: JSS with integrated WS-Agreement is currently available for
two Grid middleware environments: JSS provides support for Globus Toolkit 4
and NorduGrid/ARC. Integration with another Grid middleware only consists
of writing the authorization plug-in described above.
WS-Agreement implementation: JSS is using a WS-Agreement
implementation that was done at the Umeå University. The implementation
originally was planned to be based on Cremona (an early WS-Agreement
implementation by IBM), which turned out not to be feasible as IBM did not
give access to the source code. The GT4/WSRF-based implementation is
rather straightforward, with createAgreement() requests forwarded by the
AgreementFactory to a decision making plug-in, which interacts with the local
resource management system. One such plug-in is used to create advance
reservations, and hence interacts with the batch system scheduler. JSS
currently support the Maui scheduler, although others (supporting advance
reservation) easily can be added. JSS also implements a two-phase
mechanism, where reservations will be released shortly after their creation,
unless they are confirmed. This is implemented using WS-Resource Lifetime,
as each Agreement is modelled as a WS-Resource. The terms used to
negotiate advance reservations are

• number of CPUs,
• duration,
• earliest allowed start time,
• latest allowed start time,
• malleability flag.

The semantics of a malleable reservation is that the local scheduler may
modify the reservation start time freely, as long as the start time stays in the
[earliest, latest] allowed start time window. Previous research demonstrates
that this behaviour reduces the utilization drop induced by using advance
reservations. JSS has however, due to lack of support in the local scheduler,
not been able to implement malleable reservations, although the system is
prepared to support it. Reservations are created by the job submission service

GWD-E August 30, 2009

graap-wg@ggf.org 16

during resource brokering. When the job is submitted to the selected
resource, an identifier for the created reservation is included in the job
description.

4.9 SmartLM
Name: WS-Agreement for Java (WSAG4J)
Category: Generic framework
License type: BSD
Link: http://packcs-e0.scai.fraunhofer.de/mss-project/index.html
Description: SmartLM is a European project funded in FP7. SmartLM aims at
rendering mechanisms for managing and using software licenses in a more
fair and flexible way. SmartLM licenses may be used seamlessly in local
cluster environments, as well as in local or remote Grid and Cloud
environments, and under circumstances that the SOA concept presents. In
SmartLM licenses are managed as agreements between the user and the
license management system, extending the conventional Service Level
Agreements (SLAs) which are made today between sellers and buyers in the
market. The SLA defines the terms of license usage for running a license-
protected application. These terms comprise e.g. the features of the
application to be used, the number of processors for parallel execution, the
estimated time of the application execution, the price for using the license.
Negotiation is supported when the license is requested, e.g. to allow for co-
allocation of computational resources and licenses, to find a suitable time for
the execution with the requested features or to minimise the price. Re-
negotiation is supported during run-time, e.g. for extending or reducing of the
estimated-run time, to add or remove features. Negotiation and re-negotiation
are implemented on top of WS-Agreement while keeping the enhanced
version of WS-Agreement upward compatible. More details can be found on
the project website: http://www.smartlm.eu.
Grid ecosystems: SmartLM has a licence management service that uses WS-
Agreement as interface to either the user’s client or a meta-scheduling service
managing the co-allocation. As meta-scheduling service we use the MSS
(developed in the VIOLA and PHOSPHORUS project as described in the next
section). Basically, SmartLM itself is middleware independent, we have
testbeds with both UNICORE 6 and Globus Toolkit 4.2. The MSS also is
middleware independent using different adapters for different middleware
systems, currently UNICORE 6 and Globus Toolkit 4.2. Integration with
another Grid middleware only requires writing another adapter.
WS-Agreement implementation: SmartLM uses the WSAG4J framework (see
section 6 for details), which is a WS-Agreement implementation in Java that
has been developed at the Fraunhofer Institute SCAI. For the description of
jobs we use JSDL. However, since JSDL does not allow specifying license
terms along with the applications a new schema has been defined in SmartLM
to describe license terms. Terms used to describe a license are, e.g.

• features of an application to be used,
• number of CPUs for parallel execution of the application,

GWD-E August 30, 2009

graap-wg@ggf.org 17

• estimated duration,
• earliest start-time,
• latest end-time.

WS-Agreement is used both for SLAs on the computational resources for the
execution of the license-protected application and the SLAs for reserving a
specific license for a dedicated time.

4.10 VIOLA/PHOSPHORUS/IANOS
Name: MetaScheduling Service
Category: Meta-scheduler
License type: BSD
Link: http://packcs-e0.scai.fraunhofer.de/mss-project/index.html
Description: In the VIOLA project an optical test-bed between multiple
partners in Germany has been implemented. The main goals were the test of
advanced network architectures, development of software for user-driven
dynamical provision of bandwidth and test of parallel applications. The project
ended in April 2007 but the MSS was and is being further developed in a
number of other projects like PHOSPHORUS [http://www.ist-phosphorus.eu/]
or IANOS [http://www.ianos.org].
Grid ecosystems: Grid applications in VIOLA were run on three Linux-based
PC-Clusters, a SUN-Cluster and a Cray X-D1 with a total peak performance
of 900 GFLOPS. The VIOLA Grid is based on UNICORE. A single instance of
a MetaScheduling Service integrated into the UNICORE middleware is able to
perform co-ordinated CPU and network bandwidth reservation between the
clusters in the Grid, enabling distributed applications on these systems
[http://www.viola-testbed.de/].
WS-Agreement implementation: The VIOLA MetaScheduling Service MSS is
responsible for negotiation of resource allocation with the local scheduling
systems. It is implemented as a Web Service receiving a list of resources
preselected by a resource selection service. The resource reservation is
based on WS-Agreement. Network resources are reserved through a WS-
Agreement Interface with the Adapter of the NRMS ARGON (VIOLA) and the
HARMONY network resource brokering system (PHOSPHORUS). Resource
reservations are negotiated through adapters with local scheduling systems
also using WS-Agreement. Furthermore, the negotiation between the MSS
and the UNICORE Client is based on WS-Agreement. When a UNICORE
Client wants to make a reservation, it sends the resource request to the MSS
as a WS-Agreement template. The MetaScheduling Service then negotiates a
potential start time for the Job and requests reservation of the network and
computational resources. After successful completion of this reservation the
MSS sends an End Point Reference of the created WS-Agreement back to
the UNICORE Client.

GWD-E August 30, 2009

graap-wg@ggf.org 18

5. Constructs used in WS-Agreement – An Analysis

5.1 Introduction
The following projects participated in the questionnaire and contributed to this
document (Abbreviation used in the table is given in parentheses):

- AssessGrid (AG)

- Job Submission Service (JSS)

- Phosphorus (WSAG4U)

- BREIN (BREIN)

- BEinGRID (BE20, BE22, and BE25 are different business experiments
within BEinGRID)

- AgentScape (AS)

The following legend is used to describe what has been implemented:

- y = yes
- n = no
- p = partially
- - = no because parent element not implemented

5.2 Top level Agreement-element
Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
/Agreement y y y y y y y y

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 @AgreementId y (1) n y (2) y y y y

(1) UUID generated by Agreement Initiator, needs to be globally unique
(2) Counter that specifies the version of an agreement (will be incremented when an agreement changes when re-negotiated)

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /Name y y y y y y y y

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /AgreementContext y y y y y y y y

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /Terms y y y y y y y y

GWD-E August 30, 2009

graap-wg@ggf.org 19

5.3 Context-
element

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
/Context y y y y y y y y

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 @any attribute n n n n n n n

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /AgreementInitiator y (1) y n (2) y y y n y

(1) Custom tag that contains a Distinguished Name identifying the user, such as:
<wsag:AgreementInitiator xsi:type=”assessgrid:DistinguishedName_Type”>

 /O=Grid/OU=GlobusTest/OU=simpleCA-assessgrid/CN=Dominic Battre

</wsag:AgreementInitiator>
(2) to be implemented in future version

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /AgreementResponder y (1) n n (2) y y y n y (3)

(1) Custom tag that contains a Distinguished Name identifying the user, see AgreementInitiator
(2) to be implemented in future version
(3) AgreementProvider

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /ServiceProvider y (1) n y y y y y

(1) The ServiceProvider is always the Agreement Responder

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /ExpirationTime y (1) n n (2) y y y y y (3)

(1) This is part of the template but ignored, as the meaning is not quite clear: Either it means (1) at the time of the ExpirationTime, the
SLA loses its meaning (maybe then this should be part of the guarantees), (2) at this time, the WS-Resource is deleted
(2) to be implemented in future version
(3) Duration

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /TemplateId y (1) n y (2) y y y y

(1) This is used to distinguish two kinds of templates with different structure (1) regular SLA for a job submission, (2) SLA used to
outsource a checkpointed job that needs to be executed on a remote site.
(2) Required

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /TemplateName y n y (1) y y y y y (2)

(1) Required

GWD-E August 30, 2009

graap-wg@ggf.org 20

(2) Template

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /any n n y (1) y (2) n n n

(1) Template based sessions, Negotiation
(2) For BEinGRID, added a pricing element for the whole agreement

5.4 Terms
Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 @Name of Term base-
element

y (1) n y (2) n y n

(1) Used when checking creation constraints in order to report problems
(2) Used at template design time

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
/Terms y y y y y y y y

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /All y y y y y y y y

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /All (nested) n n y n y n n

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /OneOrMore n n y n n n n

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /ExactlyOne n n y n n n n

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /ServiceDescription-
Term

y (1) y y y y y y y

(1) Description of the service to be delivered using JSDL-POSIX or JSDL-SPMD plus some extension regarding probability of failure
guarantees. An entire job is described as one JSDL job definition which is contained in a single ServiceDescriptionTerm.

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /ServiceReference n n n y n y n

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /ServiceProperties n y n (1) y n n n

(1) To be implemented for automatic guarantee term evaluation

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS

GWD-E August 30, 2009

graap-wg@ggf.org 21

 /GuaranteeTerm y (1) y y y y y y

(1) The AssessGrid project had problems modeling the SLAs because in their scenario, SLAs can be either fulfilled (job was executed
correctly) or violated (job failed because a machine crashed). The SLA consists of several guarantees, but it is desired that the entire
SLA succeeds or fails. Therefore, most guarantees have no reward and penalty. Two meta-guarantees (ProviderFulfillsAllObligations
and ConsumerFulfillsAllObligations) are introduced that carry the reward and penalty of the entire SLA. The following invariant holds:
- ProviderFulfillsAllObligations.reward = ConsumerFulfillsAllObligations.penalty = SLA reward
- ProviderFulfillsAllObligations. penalty = SLA penalty
- ConsumerFulfillsAllObligations.reward = 0

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
/ServiceDescriptionTerm y y y y y y (1) y y

(1) Defining the product characteristics through <metric name=”...” type=”...” unit=”...”> tags

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 @Name y y y y y y y y

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 @ServiceName y (1) n y y y y y y

(1) In the Provider implementation (where the Negotiation Manager encapsulates the RMS) this attribute is ignored,
as only one service is allowed per SLA. In the Broker implementation, the broker maps workflows to SLAs with one or more providers.
The service names are used to identify the individual tasks.

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /any y y y y n y y (1)

(1) Defining the remote resource characteristics through several SDT terms, each with a different tag content: numberOfCPUs,
cpuMemory, cpuStore, numberCPU, pricePerHour

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
/ServiceReference n (1) n n n n y n n

(1) The AssessGrid developers did not understand how to use this from the specification

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 @Name - - - - - y - -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 @ServiceName - - - - - y - -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /any - - - - - y (1) - -

(1) Specifying the reference through an element tag with contains a URL

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
/ServiceProperties n y n (1) n n y (1) n n

GWD-E August 30, 2009

graap-wg@ggf.org 22

(1) The properties below will be implemented and used for automatic guarantee term evaluation in a later release
(2) Basically describes the tags that are found in the SDT found previously

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 @Name - n - - - y - -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 @ServiceName - n - - - y (1) - -

(1) Cross references to SDT above

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /VariableSet - y - - - y - -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /Variable - y - - - y - -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 @Name - y - - - y - -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 @Metric - N - - - y - -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /Location - n - - n (1) - -

(1) The location tag is used but has no content

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
/GuaranteeTerm y y y y y y y n (1)

(1) Under active development

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 @Name y y y n y y y -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 @Obligated y (1) n ? n y y y -

(1) Guarantees by both parties are employed

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /ServiceScope y y y n y y (1) n -

(1) Cross references to SDT above

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 @ServiceName y (1) y y - y y - -

GWD-E August 30, 2009

graap-wg@ggf.org 23

(1) See ServiceDecriptionTerm for details

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 Any n n n - n n - -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /QualifyingCondition y (1) n n n n n n -

(1) The AssessGrid project supports a concept called cancellation policies. This allows SLAs to be canceled for a low price during a
certain period of time before the earliest start time. This period is described by an time interval that may be open to either side or closed
on both sides as shown in the example below:

<ns1:GuaranteeTerm ns1:Name="CancellationPolicy2" ns1:Obligated="ServiceConsumer">

 <ns1:ServiceScope ns1:ServiceName="ARMINIUS@UPB"/>

 <ns1:QualifyingCondition xsi:type="ns10:TimeInterval_Type"

 xmlns:ns10="http://www.assessgrid.eu/2007/02/types"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <ns10:endExcl>2009-02-23T19:45:00.749Z</ns10:endExcl>

 </ns1:QualifyingCondition>

 <ns1:ServiceLevelObjective>

 <ns1:CustomServiceLevel xsi:type="ns11:ConsumerDoesNotCancelAgreement_Type"

xmlns:ns11="http://www.assessgrid.eu/2007/02/types"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

 </ns1:ServiceLevelObjective>

 <ns1:BusinessValueList>

 <ns1:Penalty>

 <ns1:AssessmentInterval xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

 <ns1:ValueUnit>EUR</ns1:ValueUnit>

 <ns1:ValueExpression xsi:type="ns12:ValueExpression_Type"

 xmlns:ns12="http://www.assessgrid.eu/2007/02/types"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 -0,5

 </ns1:ValueExpression>

 </ns1:Penalty>

 </ns1:BusinessValueList>

</ns1:GuaranteeTerm>

The penalty is negative in order to represent a refund (the user has to pay the SLA penalty because it violated the
ConsumerDoesNotCancelAgreement guarantee.

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /ServiceLevelObject-
ive

y y n y y y y -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /BusinessValueList n n n y y y y -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
/ServiceLevelObjective y n/a

(1)
n y y y y -

GWD-E August 30, 2009

graap-wg@ggf.org 24

(1) This was an xsd:anyType in the draft implemented and is hence used rather freely (see example)

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /KPITarget n - - y n y y -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /KPIName - - - y - y y -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /Target - - - y - y n -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /CustomServiceLevel y (1) - - y y y (2) y (3) -

(1) All SLOs are represented by simple XML Elements:
<wsag:CustomServiceLevel xsi:type="assessgrid:ProviderFulfillsAllObligations_Type"/>

<wsag:CustomServiceLevel xsi:type="assessgrid:ConsumerFulfillsAllObligations_Type"/>

<wsag:CustomServiceLevel xsi:type="assessgrid:ScheduleRestriction_Type">

 <assessgrid:EarliestStartTime>

 2007-03-01T00:00:00+01:00

 </assessgrid:EarliestStartTime>

 <assessgrid:LatestFinishTime>

 2007-03-01T12:00:00+01:00

 </assessgrid:LatestFinishTime>

</wsag:CustomServiceLevel>

<wsag:CustomServiceLevel xsi:type="assessgrid:MaxStageInDuration_Type">

 PT20S

</wsag:CustomServiceLevel>

<wsag:CustomServiceLevel xsi:type="assessgrid:MaxStageOutDuration_Type">

 PT20S

</wsag:CustomServiceLevel>

<wsag:CustomServiceLevel xsi:type="assessgrid:ConsumerDoesNotCancelAgreement_Type" />
(2) Defines the evaluation of the guarantee through functions like “EXACT, GREATERTHAN, etc.”
(3) Defines the evaluation of the guarantee through comparison functions like “< 0.8”

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
/BusinessValueList n n (1) y y (2) y (3) y n (4)

(1) see comment below
(2) tag is present, but never used or assessed
(3) Tag is present, but used only on the Price Guarantee Term
(4) Under active development

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /Importance - - n y (1) n n -

(1) tag is present, but never used or assessed

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /Penalty - - y y (1) n n -

GWD-E August 30, 2009

graap-wg@ggf.org 25

(1) tag is present, but never used or assessed

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /Reward - - - n n n n -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /Preference - - - n n n y -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /CustomBusinessValue - - - n n y (1) n -

(1) tag is present, but only used in the Price Guarantee Term

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
/Penalty y n (1) n (2) y y (3) n n n (4)

(1) The project targets a traditional academic computing environment where compute resources are allocated to researches by a committee
based on scientific contributions. In such an environment, where resource consumption is not based on economic compensation
(although accounting and quota enforcement do occur), it makes little sense to discuss business value and/or economical penalty.
(2) the properties below will be implemented and used for automatic guarantee term evaluation in a later release
(3) tag is present, but never used or assessed
(4) Under active development

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /AssessmentInterval y (1) n - y y - - -

(1) This is only used to fulfill the schema requirements. The RMS detects violations itself, so this is not based on polling but on pushing
events.

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /TimeInterval y (1) - - y y - - -

(1) This is only used to fulfill the schema requirements. The RMS detects violations itself, so this is not based on polling but on pushing
events.

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /Count n (1) - - n n - - -

(1) This is not used but the meaning is not clear either.

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /ValueUnit y (1) - - y y - - -

(1) Only one currency supported (“EUR”)

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /ValueExpression y (1) - - y y - - -

GWD-E August 30, 2009

graap-wg@ggf.org 26

(1) The value expression contains only constant numbers like for example:
<wsag:ValueExpression xsi:type="assessgrid:ValueExpression_Type"> 1000.0 </wsag:ValueExpression>

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
/Preference n - n (1) n n n y n (2)

(1) the properties below will be implemented and used for automatic guarantee term evaluation in a later release
(2) Under active development

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /ServiceTermRef-
erence

- - - - - - y (1) -

(1) References one of the SDTs above

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /Utility - - - - - - y -

5.5 Templates
Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
/Template y (1) y (2) y y y y y y

(1) Templates are stored statically; they are not generated at runtime.
(2) This is supported, but only to the extent that the AgreementInitator uses the name of the template to ensure that the Provider supports a
certain type of Agreements. No CreationConstraints, etc. are used, as the availability of a free time slot (a backfill window) does not
necessarily mean that any user may create a reservation for that slot. We hence resort to a per-case based negotiation with minimal pre-
knowledge of constraints.

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 @TemplateId y n y y ? y y

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /Name y y y y ? y y y

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /AgreementContext y n y y ? y y y

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /Terms y n y y ? y y y

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /CreationConstraints y (1) n y (2) n ? n (3) n (4) y

(1) Creation constraints are not completely supported by an XML Schema validator. This is probably not possible in the Globus Toolkit
hosting environment because namespaces get lost at an early stage.
(2) Generic validation support for arbitrary Creation Constraints that use ItemConstraint
(3) Creation Constraints are not used, instead the service properties are used to define the service terms – but no limitations on bounds are
provided
(4) Creation Constraints tags exists but empty. Creation Constraints tags are not used, instead the constraints are defined in a framework
agreement

GWD-E August 30, 2009

graap-wg@ggf.org 27

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /Item y - y - ? - - y

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /Constraint n - y - ? - -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
/Item y n y n y n - y

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 @Name y (1) - y - y - -

(1) Used for reporting problems

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /Location y (1) - y - y - - y

(1) XPath expressions are used with the exception that namespace-prefix binding is fixed and not related to the namespace-prefixes in the
SOAP message. This is because the binding gets lost in a Globus Toolkit environment when the SOAP message is translated into a Java
Bean.

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /ItemConstraint p (1) - y - y - -

(1) Supported are:
- xs:(max,min)(In,Ex)clusive
- restrictions to enumerations of strings

Overall the implemented validation is rather limited and the suggested specification is considered very difficult to implement.

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /restriction p - y - n - - y

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /group n - y - n - -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /all n - y - n - -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /choice n - y - n - -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /sequence n - y n - -

Element AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
 /any n - n (1) - y - -

GWD-E August 30, 2009

graap-wg@ggf.org 28

(1) Will be used in future releases to specify/enforce cardinality of XPath results

5.6 Agreement
States

 AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Agreement States y n (1) y y n (2) ? ? n

(1) In this project work, the authors concluded that monitoring of the state of an advance reservation did not fit into the envisioned state
model. An advance reservation either exists, or stops to exist, the latter case being an unrecoverable error. This contrasts, to e.g., state
monitoring of a guaranteed network bandwidth agreement.
(2) The Agreement is not currently being monitored, but will be in the future – all states would be used.

State AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Pending y - y n - -

State AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Pending and
Terminating

n - n n - -

State AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Observed y - y y - -

State AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Observed and
Terminating

n - y n - -

State AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Rejected n (1) - n n - -

(1) Agreements are rejected with an exception at the time of the createAgreement call

State AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Complete n - y n - -

State AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Terminated y - y y - -

5.7 Service Run-time
States

 AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Service Run-time States y n y n n (1) ? ? n

(1) The Agreement is not currently being monitored, but will be in the future – all states would be used.

State AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Not Ready y - y - - -

GWD-E August 30, 2009

graap-wg@ggf.org 29

State AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Ready y - y - - -

State AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Processing n - y - - -

State AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Idle n - n - - -

State AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Completed y - y - - -

5.8 Guarantee
States

 AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Guarantee States y n y n n (1) ? ? n

(1) The Agreement is not currently being monitored, but will be in the future – all states would be used.

State AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Fulfilled y - y - - -

State AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Violated y - y - - -

State AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Not Determined y - y - - -

5.9 Port Types
Port Type AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Agreement Factory y y y y y y y n

Port Type AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Pending Agreement
Factory

n n (1) n y n ? ? n

(1) Did not exist in draft specification

Port Type AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Agreement y y y y y y y n

Port Type AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Agreement Acceptance n n (1) n n (2) n ? ? n

(1) Did not exist in draft specification
(2) Pending Agreement Factory but not Agreement Acceptance?

GWD-E August 30, 2009

graap-wg@ggf.org 30

Port Type AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Agreement State y n y y n ? ? n

Port Type AG JSS WSAG4U BREIN BE20 BE22 BE25 AS
Custom Port Types y (1) n (2) n (3) n n ? ? n

(1) see below
(2) see below
(3) WSRF-ServiceGroups, WSRF-Lifetime

GWD-E August 30, 2009

graap-wg@ggf.org 31

6. WSAG4J – A Generic WS-Agreement Framework
In this section, WSAG4J is detailed, as it is found to be one of the most
advanced and complete software package which implements the WS-
Agreement 1.0 specification. Nonetheless, there are competing solutions,
which can also be considered, for example those listed in chapter 4. The most
up-to-date list is maintained by the GRAAP-WG:
https://forge.gridforum.org/sf/wiki/do/viewPage/projects.graap-
wg/wiki/Implementations
WS-Agreement for Java (WSAG4J) is a generic implementation of the WS-
Agreement protocol. It supports common functionality to create and monitor
agreements in a generic way and enables users to quickly build and deploy
WS-Agreement based services.
WSAG4J implements the Agreement Factory port type for the creation of
agreements, and the Agreement State port type for monitoring the states of
existing agreements. At the current state, WSAG4J does not support the
Pending Agreement Factory port type and the Agreement Acceptance port
type; this will be subject for a future release.

WSAG4J follows a declarative approach to support and manage the whole
lifecycle of an agreement, starting from the definition of an agreement
template, over the deployment of the templates in factories, to the
management of the agreement itself. The main components and their
interaction are depicted in Figure 1. The main features of WSAG4J are listed
below:

- Host multiple agreement factories within one WSAG4J engine
- Customizable persistence layer for Agreement Factory and Agreement

instances
- Default implementation of persistence layer based on configuration file

persistence
- Easy to use server and client side API
- Free configurable factory actions within one WSAG4J engine
- Definition of Agreement Templates based on XML files
- Dynamic template creation by using macros in template definition
- Dynamic agreement offer validation based on creation constraints
- Dynamic agreement guarantee evaluation and generation of

accounting events
- Negotiation of agreement templates
- Support of WS-Security and WS-Policy

GWD-E August 30, 2009

graap-wg@ggf.org 32

Figure 1: WSAG4J components

As already mentioned, WSAG4J emphasizes the definition of SLA templates
and utilizes the information provided in the templates to validate agreement
offer compliance at SLA creation time and to monitor agreement compliance
during SLA execution time.
Agreement template design
WSAG4J supports developers at designing SLA templates by allowing them
to publish templates in form of XML files rather than implementing them via an
API. Furthermore, WSAG4J enables developers to dynamically generate SLA
templates by using a macro language within the template definition files.
Since the developer defines the template as an XML document, the template
files can be edited easily, and the developer does not need to implement
agreement templates on API level but can put his focus on the design of the
template rather than on the technical details and implementation details.
Therefore, the level of entry for designing and implementing WS-Agreement
based services is drastically lowered.
Agreement offer validation

WS-Agreement supports the definition of so called creation constraints as part
of agreement templates. These creations constrains define how a valid
agreement offer based on a specific template is constructed. On the one hand
this comprises the structure of the agreement offer, e.g. the service
description terms, the structure of a JDSL document contained in a service
description term, and the elements that must be contained in this document.
On the other hand, creation constraints can define concrete values that a
specific element in an agreement offer may take, e.g. the minimum and
maximum CPU speed of a computing system.
In case an agreement offer is created based on a template that defines a set
of creation constraints, these constraints are automatically evaluated by the
WSAG4J engine before the offer is passed to the associated agreement
creation action. In that way, only agreements based on valid offers are

GWD-E August 30, 2009

graap-wg@ggf.org 33

created by a WSAG4J service.

Agreement guarantee evaluation
WSAG4J also provides automatic ways for guarantee evaluation. Similar to
the validation of creation constraints, the definition of guarantee terms serves
as a foundation for the guarantee evaluation. WSAG4J proposes certain best
practices that must be followed, in order to evaluate guarantee terms
successfully.

The basic principle for defining
guarantee terms that can be
automatically validated is to define
guarantees only over measurable
properties of an SLA. WS-Agreement
supports the definition of properties via
the ServiceProperties language
element. A service property can be
seen as similar to a variable in a
programming language. It binds a
(property) name to a certain value of
the agreement properties. This is done
by referring to this value via an XPath
expression.

The agreement properties comprise static data like agreement name, context
and service terms that were part of the agreement offer, and dynamic data
such as the agreement state and the state of the different service and
guarantee terms. Service term states usually comprise monitoring data that is
periodically updated. In contrast to that, guarantee term states are
automatically derived from service term states by the WSAG4J engine.

In WSAG4J we assume that guarantees define a relationship between a
requested service level (nominal value) and a provided service level (actual
value). In WS-Agreement, this relationship is expressed in the service level
objective (SLO) of a guarantee term. WSAG4J supports the flexible definition
of service level objectives and guarantee terms. In order to define a SLO, the
requested and provided service levels (nominal and actual values) are
exposed as service properties (see Figure 2). The SLO then defines a
relationship over these service properties using a simple expression
language.

Like creation constraints, guarantee terms are defined at the design time of a
SLA template. Once an SLA has been created, the WSAG4J engine
periodically evaluates the state of all guarantee terms that are part of this
SLA. Furthermore, WSAG4J will account fulfilments and violations of

Figure 2: WS-Agreement guarantee
evaluation.

GWD-E August 30, 2009

graap-wg@ggf.org 34

guarantees.

Conclusion
WSAG4J is a generic framework that support users to easily develop and run
WS-Agreement based services. It implements basic mechanisms for creating
valid SLAs and managing agreement compliance during runtime. It ships with
its own web service stack and provides support for WS-Security and WS-
Policy. Furthermore, a simple, action based programming model enables
users to easily deploy new agreement templates with custom agreement
creation and monitoring strategies in a WSAG4J server and the usage of
custom persistence layers is supported.

GWD-E August 30, 2009

graap-wg@ggf.org 35

7. Interoperation Testing based on the AssessGrid and the VIOLA
Implementations

The general sequence of messages to create an agreement between two
parties is the following: A user (i.e. agreement initiator) exists at administrative
domain A, and an AgreementFactory (i.e. the agreement responder) exists at
administrative domain B (see also Figure 3). The AgreementFactory publishes
a set of agreement templates via its WSRF Resource Properties. The
agreement initiator may now query the AgreementFactory for its agreement
templates, which in turn returns the published templates to the agreement
initiator. The agreement initiator selects the template most suitable to its
needs. Based on the selected template, a new agreement offer is created.
This new offer is then adapted to the requirements of the agreement initiator.
The agreement initiator may change the service descriptions according to its
needs, taking into account the constraints posed by the agreement responder.
The agreement responder may for example specify a default value for the
total available resources for a computation within an agreement template.
When the agreement initiator creates an offer based on the template, it can
now adjust the total requested resources according to its needs. The created
offer is then sent from the agreement initiator to the responder, indicating that
a new agreement should be created. The agreement responder can now
choose whether or not to create the agreement. In case the responder
chooses to accept an offer, it creates a new agreement instance and sends
the endpoint reference (EPR) of the agreement instance to the agreement
initiator. The agreement initiator can now query the agreement instance at the
given EPR for its resource properties, using WSRF’s
GetResourceProperties() method.

GWD-E August 30, 2009

graap-wg@ggf.org 36

In order to test interoperability of independent grid scheduler implementations
using the WS-Agreement protocol, an interoperability scenario was set up
featuring the AssessGrid Negotiation Manager (NegMgr) and the VIOLA
MetaScheduling Service (MSS). The goal of this interoperation test was to
submit a computational job using the MSS client (based on Apache Muse
2.2.0) to the NegMgr AgreementFactory (based on Globus 4.0). The
interoperation scenario realised interoperability on the protocol level to test
WS-Agreement and its associated protocols. Please note that the
interoperability tests carried out did not deal with any issues related to
security.
In the following the interoperation scenario is described in detail (please refer
also to Figure 3):

The MSS discovers the NegMgr’s AgreementFactory endpoint (based on
the configuration).

The MSS queries the NegMgr’s AgreementFactory for available templates.
The MSS selects the template for submitting compute jobs.
The MSS creates an AgreementOffer based on the selected template.
The MSS calls the createAgreement() operation on NegMgr’s

AgreementFactory.
The NegMgr submits the job and creates a new Agreement service

instance.
The NegMgr returns the EPR for created Agreement service instance.
The MSS monitors the agreement’s state and the ServiceTerms state.

The interoperation tests performed in the GRAAP working group focus on the
execution of compute jobs between the AssessGrid Negotiation Manager and
the VIOLA MetaScheduling Service. Both implementations use different

Figure 3: WS-Agreement sequence of messages to create an agreement.

GWD-E August 30, 2009

graap-wg@ggf.org 37

software stacks in order to implement the WS-Agreement protocol. The
VIOLA MSS implementation is based on the Apache Muse 2.2.0 software
stack, while the NegMgr is based on the Globus 4.0 software stack. The
different software stacks used to implement the WS-Agreement protocol layer
implement different versions of the WSRF protocol. The Globus 4.0
framework implements a draft version of the WSRF protocol (WSRF-1.2
draft), while the Apache Muse 2.2.0 framework implements the final version of
the specification (WSRF 1.2 final). Therefore, an interoperability layer was
required in order to enable the MSS client to create agreements with the
NegMgr agreement factory. This interoperability layer was realized in form of
an interoperability proxy, which was responsible for achieving interoperability
on protocol level. The interoperability proxy uses XSLT to transform the
WSRF messages produced by the MSS client into WSRF messages that are
understood by the AssessGrid NegMgr. Figure 4 shows the communication
flow described below using the interoperability proxy.
The MSS client sends a request to the interoperability proxy (1). The

interoperability proxy applies a set of XSL style sheets on the message in
order to transform the ‘WSRF 1.2 final’ specific parts of the message into the
‘WSRF 1.2 draft’ specific form (2,3). The transformed message is then
forwarded to the AssessGrid NegMgr (4) and the message is processed. The
NegMgr then sends back a response message to the interoperability proxy
(5). The interoperability proxy again applies a set of XSL style sheets on the
message in order to transform the ‘WSRF 1.2 draft’ specific parts of the
message into the ‘WSRF 1.2 final’ specific form (6,7). The transformed
response is then returned to the MSS client (8).
This interoperability tests illustrate, how interoperability on message level can
be achieved. Only the WSRF related parts of the messages have to be
transformed. The WS-Agreement specific parts did not require any
transformation.

8. Conclusions
As presented in this document, WS-Agreement has increasingly been used as

MSS
client

Interoperability
proxy

Message
transformation

(XSLT)

Assess
Grid

NegMgr

1

2, 6 3, 7

4

5 8

Figure 4: Communication flow using the interoperability proxy

GWD-E August 30, 2009

graap-wg@ggf.org 38

technology for creating Service Level Agreements in a variety of projects and
environments. Since the information about WS-Agreement implementations
was gathered at the end of 2008, this number has increased since then; e.g. a
couple of new European projects have begun that build upon WS-Agreement
when implementing their infrastructure for SLA management and monitoring.
The investigation regarding WS-Agreement usage and experiences from
implementing and using WS-Agreement shows that there are two aspects that
need to be considered for interoperability. While no problems have been
reported on the protocol level and the language elements of WS-Agreement, it
turned out that

• the use of different hosting environments and
• the use of different term languages for service description terms and

guarantee terms
may lead to incompatibility issues.
As presented in this document (see section 7), a feasible solution to the
problems arising from different hosting environment is the deployment of a
proxy, which performs the necessary transformations of the XML documents
rendered differently by the hosting environments used.
For the issues resulting from using different term languages, the GRAAP-WG
is already working on a number of profiles for WS-Agreement covering the
most common use-cases. These will be published in separate documents.
Another issue that was reported over the last two years since the WS-
Agreement specification was published as GFD.107 is the limited negotiation
capability of WS-Agreement. There are a number of use-cases where
negotiation is required either when creating the agreement or during the life-
time of an agreement. As a consequence, the group has started discussion on
negotiation and re-negotiation more than a year ago and reached an
agreement on how to add (re-)negotiation without breaking the compatibility
with WS-Agreement version 1.0. At the time of creating this experience
document, the discussions have converged already towards on solution and
even a first implementation of negotiation has become available. The working
group is currently in the process of creating a GFD with the necessary
extensions to WS-Agreement 1.0.

GWD-E August 30, 2009

graap-wg@ggf.org 39

9. Contributors
Dominic Battré (Editor)
TU Berlin
Email: dominic.battre@tu-berlin.de

Thomas Fahringer
Innsbruck University
Email: tf@dps.uibk.ac.at

Bastian Koller
HLRS
Email: koller@hlrs.de

David Mobach
Vrije Universiteit
Email: dga.mobach@few.vu.nl

Omer Rana
Cardiff University
Email: o.f.rana@cs.cardiff.ac.uk

Igor Rosenberg
Atos Origin
Email: igor.rosenberg@atosresearch.eu

Johan Tordsson
Umeå University
Email: tordsson@cs.umu.se

Oliver Wäldrich
Fraunhofer SCAI
Email: oliver.waeldrich@scai.fraunhofer.de

Philipp Wieder (Editor)
Dortmund University of Technology
Email: philipp.wieder@udo.edu

Wolfgang Ziegler (Editor)
Fraunhofer SCAI
Email: wolfgang.ziegler@scai.fraunhofer.de

GWD-E August 30, 2009

graap-wg@ggf.org 40

10. Glossary
ALN Application Layer Networks, integrating different Internet

overlay network approaches, like Grid and P2P systems.
BE Business Experiment, sub-projects of the BEinGRID project
DC Domain Coordinator, a mediator in AgentScape

representing multiple autonomous hosts and communicating
with the mobile agent on behalf of these nodes

EPR End Point Reference
GT4 Globus Toolkit Version 4 Grid middleware
IMRT Intensity-Modulated Radiation Therapy, a recent radiation

technique allowing complex radiation schemes, especially
applied near sensitive healthy organs.

JSDL Job Submission Description Language, OGF specification.
JSDL is used to describe the requirements of computational
jobs for submission to resources

JXTA Technology to create peer-to-peer (P2P) applications based
on Java technology.

MSS MetaScheduling Service, a Grid-level Scheduler for arbitrary
types of resources with native support for WS-Agreement

OpenCCS Computing Center Software. Planning and topology based
resource management for networked high-performance
computers.

QoS Quality of Service, described the quality of the requested or
delivered service.

RMS Resource Management Systems, managing local (most
often computational) resources

SDT Service Description Term, describe the essential
characteristics of a service provided or requested.

SLA Service Level Agreement, a binding agreement between
service provider and service consumer about the QoS
delivered and consumed. The degree of bindingness might
differ depending on domain and purpose.

SLO Service Level Objective, expresses in WS-Agreement the
relationship defined in the agreement guarantees between a
requested service level (nominal value) and a provided
service level (actual value).

SOA Service Oriented Architecture, provides a set of principles of
governing concepts used during phases of systems
development and integration. Such an architecture will
package functionality as interoperable services: functions
provided as a service are available to be used from systems

GWD-E August 30, 2009

graap-wg@ggf.org 41

created by other organizations.
WSDL Web Service Description Language, a description language

for Web Services for the exchange of XML-based
messages.

WSRF Web Service Resource Framewor, a generic and open
framework for modeling and accessing stateful resources
using Web services.

XSLT Extensible Stylesheet Language (XSL) Transformations
(XSLT), a declarative XML-based language used for the
transformation of XML documents into other XML
documents.

GWD-E August 30, 2009

graap-wg@ggf.org 42

11. Intellectual Property Statement
The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which any
license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses
to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or
users of this specification can be obtained from the OGF Secretariat.
The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover
technology that may be required to practice this recommendation. Please
address the information to the OGF Executive Director.

12. Disclaimer
This document and the information contained herein is provided on an “As Is”
basis and the OGF disclaims all warranties, express or implied, including but
not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

13. Full Copyright Notice
Copyright (C) Open Grid Forum (2008, 2009). All Rights Reserved.
This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative
works. However, this document itself may not be modified in any way, such as
by removing the copyright notice or references to the OGF or other
organizations, except as needed for the purpose of developing Grid
Recommendations in which case the procedures for copyrights defined in the
OGF Document process must be followed, or as required to translate it into
languages other than English.
The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

GWD-E August 30, 2009

graap-wg@ggf.org 43

14. References
Note that only permanent documents are cited as references. Other items,
such as Web pages or working groups, are cited inline (i.e., see the Open
Grid Forum, http://www.ogf.org).

[RHJ08] Rosenberg, I., Heek, R., and Juan, A.: An SLA Framework for

the GT4 Grid Middleware, Collaboration and the Knowledge Economy:
Issues, Applications, Case Studies (eChallenges 2008), 2008.

[SOZ+07] Seidel, J., Wäldrich, O., Ziegler, W., Wieder, P., and Yahyapour,
R.: Using SLA for resource management and scheduling – a survey,
CoreGRID Technical Report TR-0096.

[BRADNER1] Bradner, S.: Key Words for Use in RFCs to Indicate
Requirement Levels, RFC 2119. March 1997.

[GFD.107] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko
Ludwig, Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke,
Ming Xu: Web Service Agreement (WS-Agreement). GFD.107 proposed
recommendation, available at
<http://www.ogf.org/documents/GFD.107.pdf>.

[PBM08] Parkin, M. Badia, R. M., Martrat, J.: A Comparison of SLA Use in Six
of the European Commissions FP6 Projects, CoreGRID Technical Report
TR-0129.

GWD-E August 30, 2009

graap-wg@ggf.org 44

15. Appendix A – Example SLA Templates & Agreements
Generic Agreement Template with SDTs using JSDL and guarantees with
assessment interval definitions
<wsag:Template xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-
agreement">
 <wsag:Context>
 <wsag:AgreementInitiator/>
 <wsag:AgreementResponder/>
 <wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>
 <wsag:ExpirationTime>2009-04-
08T20:24:15.408+02:00</wsag:ExpirationTime>
 <wsag:TemplateId>1</wsag:TemplateId>

<wsag:TemplateName>GuaranteeEvaluationTemplate</wsag:TemplateName>
 </wsag:Context>
 <wsag:Terms>
 <wsag:All>
 <wsag:ServiceDescriptionTerm wsag:Name="Term1"
wsag:ServiceName="Service1">
 <jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <jsdl:JobDescription>
 <jsdl:Application>
 <jsdl:ApplicationName>KillerApp1</jsdl:ApplicationName>
 <jsdl:ApplicationVersion>1.0</jsdl:ApplicationVersion>
 <jsdl:Description>My first Killer
Application</jsdl:Description>
 </jsdl:Application>
 <jsdl:Resources>
 <jsdl:IndividualCPUSpeed>
 <jsdl:Exact>2.0E9</jsdl:Exact>
 </jsdl:IndividualCPUSpeed>
 <jsdl:IndividualCPUCount>
 <jsdl:Exact>2.0</jsdl:Exact>
 </jsdl:IndividualCPUCount>
 <jsdl:TotalResourceCount>
 <jsdl:Exact>16.0</jsdl:Exact>
 </jsdl:TotalResourceCount>
 </jsdl:Resources>
 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </wsag:ServiceDescriptionTerm>
 <wsag:GuaranteeTerm wsag:Name="CPU_SPEED_GUARANTEE">
 <wsag:ServiceScope wsag:ServiceName="Service1"/>
 <wsag:ServiceLevelObjective>
 <wsag:KPITarget>
 <wsag:KPIName>CPU SPEED</wsag:KPIName>
 <wsag:CustomServiceLevel>REQ_CPU_SPEED <=
ACT_CPU_SPEED</wsag:CustomServiceLevel>
 </wsag:KPITarget>
 </wsag:ServiceLevelObjective>
 <wsag:BusinessValueList>
 <wsag:Penalty>
 <wsag:AssessmentInterval>
 <wsag:TimeInterval>P5M</wsag:TimeInterval>
 </wsag:AssessmentInterval>
 <wsag:ValueUnit>EUR</wsag:ValueUnit>
 <wsag:ValueExpression>5</wsag:ValueExpression>
 </wsag:Penalty>

GWD-E August 30, 2009

graap-wg@ggf.org 45

 <wsag:Reward>
 <wsag:AssessmentInterval>
 <wsag:TimeInterval>P5M</wsag:TimeInterval>
 </wsag:AssessmentInterval>
 <wsag:ValueUnit>EUR</wsag:ValueUnit>
 <wsag:ValueExpression>10</wsag:ValueExpression>
 </wsag:Reward>
 </wsag:BusinessValueList>
 </wsag:GuaranteeTerm>
 <wsag:ServiceProperties wsag:Name="Service_Properties_1"
wsag:ServiceName="Service1">
 <wsag:VariableSet>
 <wsag:Variable wsag:Name="REQ_CPU_SPEED"
wsag:Metric="xsd:integer">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:Terms/wsag:All/wsag:ServiceDescriptionTerm[@wsa
g:Name =
'Term1']/jsdl:JobDefinition/jsdl:JobDescription/jsdl:Resources/jsdl:I
ndividualCPUSpeed/jsdl:Exact</wsag:Location>
 </wsag:Variable>
 <wsag:Variable wsag:Name="ACT_CPU_SPEED"
wsag:Metric="xsd:integer">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
jsdl-posix='http://schemas.ggf.org/jsdl/2005/11/jsdl-posix';declare
namespace wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:ServiceTermState[@wsag:termName='Term1']/jsdl:J
obDefinition/jsdl:JobDescription/jsdl:Resources/jsdl:IndividualCPUSpe
ed/jsdl:Exact</wsag:Location>
 </wsag:Variable>
 </wsag:VariableSet>
 </wsag:ServiceProperties>
 </wsag:All>
 </wsag:Terms>
</wsag:Template>

Agreement with guarantees, penalties, agreement and term states (resulting from
template above)
<wsag:AgreementProperties
xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement">
 <wsag:Context>
 <wsag:AgreementInitiator/>
 <wsag:AgreementResponder/>
 <wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>
 <wsag:ExpirationTime>2009-04-
08T20:24:15.408+02:00</wsag:ExpirationTime>
 <wsag:TemplateId>1</wsag:TemplateId>

<wsag:TemplateName>GuaranteeEvaluationTemplate</wsag:TemplateName>
 </wsag:Context>
 <wsag:Terms>
 <wsag:All>
 <wsag:ServiceDescriptionTerm wsag:Name="Term1"
wsag:ServiceName="Service1">
 <jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <jsdl:JobDescription>
 <jsdl:Application>

GWD-E August 30, 2009

graap-wg@ggf.org 46

 <jsdl:ApplicationName>KillerApp1</jsdl:ApplicationName>
 <jsdl:ApplicationVersion>1.0</jsdl:ApplicationVersion>
 <jsdl:Description>My first Killer
Application</jsdl:Description>
 </jsdl:Application>
 <jsdl:Resources>
 <jsdl:IndividualCPUSpeed>
 <jsdl:Exact>2.0E9</jsdl:Exact>
 </jsdl:IndividualCPUSpeed>
 <jsdl:IndividualCPUCount>
 <jsdl:Exact>2.0</jsdl:Exact>
 </jsdl:IndividualCPUCount>
 <jsdl:TotalResourceCount>
 <jsdl:Exact>16.0</jsdl:Exact>
 </jsdl:TotalResourceCount>
 </jsdl:Resources>
 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </wsag:ServiceDescriptionTerm>
 <wsag:GuaranteeTerm wsag:Name="CPU_SPEED_GUARANTEE">
 <wsag:ServiceScope wsag:ServiceName="Service1"/>
 <wsag:ServiceLevelObjective>
 <wsag:KPITarget>
 <wsag:KPIName>CPU SPEED</wsag:KPIName>
 <wsag:CustomServiceLevel>REQ_CPU_SPEED <=
ACT_CPU_SPEED</wsag:CustomServiceLevel>
 </wsag:KPITarget>
 </wsag:ServiceLevelObjective>
 <wsag:BusinessValueList>
 <wsag:Penalty>
 <wsag:AssessmentInterval>
 <wsag:TimeInterval>P5M</wsag:TimeInterval>
 </wsag:AssessmentInterval>
 <wsag:ValueUnit>EUR</wsag:ValueUnit>
 <wsag:ValueExpression>5</wsag:ValueExpression>
 </wsag:Penalty>
 <wsag:Reward>
 <wsag:AssessmentInterval>
 <wsag:TimeInterval>P5M</wsag:TimeInterval>
 </wsag:AssessmentInterval>
 <wsag:ValueUnit>EUR</wsag:ValueUnit>
 <wsag:ValueExpression>10</wsag:ValueExpression>
 </wsag:Reward>
 </wsag:BusinessValueList>
 </wsag:GuaranteeTerm>
 <wsag:ServiceProperties wsag:Name="Service_Properties_1"
wsag:ServiceName="Service1">
 <wsag:VariableSet>
 <wsag:Variable wsag:Name="REQ_CPU_SPEED"
wsag:Metric="xsd:integer">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl'; declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-agreement';
$this/wsag:Terms/wsag:All/wsag:ServiceDescriptionTerm[@wsag:Name='Ter
m1']/jsdl:JobDefinition/jsdl:JobDescription/jsdl:Resources/jsdl:Indiv
idualCPUSpeed/jsdl:Exact</wsag:Location>
 </wsag:Variable>
 <wsag:Variable wsag:Name="ACT_CPU_SPEED"
wsag:Metric="xsd:integer">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl'; declare namespace

GWD-E August 30, 2009

graap-wg@ggf.org 47

wsag='http://schemas.ggf.org/graap/2007/03/ws-agreement';
$this/wsag:ServiceTermState[@wsag:termName='Term1']/jsdl:JobDefinitio
n/jsdl:JobDescription/jsdl:Resources/jsdl:IndividualCPUSpeed/jsdl:Exa
ct</wsag:Location>
 </wsag:Variable>
 </wsag:VariableSet>
 </wsag:ServiceProperties>
 </wsag:All>
 </wsag:Terms>
 <wsag:AgreementState>
 <wsag:State>Observed</wsag:State>
 </wsag:AgreementState>
 <wsag:ServiceTermState wsag:termName="Term1">
 <wsag:State>Ready</wsag:State>
 <jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <jsdl:JobDescription>
 <jsdl:Application>
 <jsdl:ApplicationName>KillerApp1</jsdl:ApplicationName>
 <jsdl:ApplicationVersion>1.0</jsdl:ApplicationVersion>
 <jsdl:Description>My first Killer
Application</jsdl:Description>
 </jsdl:Application>
 <jsdl:Resources>
 <jsdl:IndividualCPUSpeed>
 <jsdl:Exact>2.1E9</jsdl:Exact>
 </jsdl:IndividualCPUSpeed>
 <jsdl:IndividualCPUCount>
 <jsdl:Exact>2.0</jsdl:Exact>
 </jsdl:IndividualCPUCount>
 <jsdl:TotalResourceCount>
 <jsdl:Exact>16.0</jsdl:Exact>
 </jsdl:TotalResourceCount>
 </jsdl:Resources>
 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </wsag:ServiceTermState>
</wsag:AgreementProperties>

Agreement Template with Creation Constraints (UNICORE integration)
<wsag:Template wsag:TemplateId="1"
xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement">
 <wsag:Name>COMPUTE-JOB</wsag:Name>
 <wsag:Context>
 <wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>
 <wsag:TemplateId>1</wsag:TemplateId>
 <wsag:TemplateName>COMPUTE-JOB</wsag:TemplateName>
 <eng:WSAG4JSession
xmlns:eng="http://schemas.scai.fraunhofer.de/2008/11/wsag4j/engine">
 <eng:SessionID>12115dfe963-419678bc139598cf</eng:SessionID>
 </eng:WSAG4JSession>
 </wsag:Context>
 <wsag:Terms>
 <wsag:All>
 <wsag:ExactlyOne>
 <wsag:ServiceDescriptionTerm wsag:Name="APPLICATION_STD"
wsag:ServiceName="UNICORE6">
 <jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <jsdl:JobDescription>
 <jsdl:Application>

GWD-E August 30, 2009

graap-wg@ggf.org 48

 <jsdl:ApplicationName>WISDOM-
PACK</jsdl:ApplicationName>

<jsdl:ApplicationVersion>1.0</jsdl:ApplicationVersion>
 </jsdl:Application>
 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="APPLICATION_STD"
wsag:ServiceName="UNICORE6">
 <jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <jsdl:JobDescription>
 <jsdl:Application>
 <jsdl:ApplicationName>WISDOM-
UNPACK</jsdl:ApplicationName>

<jsdl:ApplicationVersion>1.0</jsdl:ApplicationVersion>
 </jsdl:Application>
 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="APPLICATION_STD"
wsag:ServiceName="UNICORE6">
 <jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <jsdl:JobDescription>
 <jsdl:Application>
 <jsdl:ApplicationName>WISDOM-
MKDIR</jsdl:ApplicationName>

<jsdl:ApplicationVersion>1.0</jsdl:ApplicationVersion>
 </jsdl:Application>
 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="APPLICATION_STD"
wsag:ServiceName="UNICORE6">
 <jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <jsdl:JobDescription>
 <jsdl:Application>
 <jsdl:ApplicationName>FDS</jsdl:ApplicationName>

<jsdl:ApplicationVersion>4.x</jsdl:ApplicationVersion>
 </jsdl:Application>
 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="APPLICATION_STD"
wsag:ServiceName="UNICORE6">
 <jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <jsdl:JobDescription>
 <jsdl:Application>
 <jsdl:ApplicationName>FlexX</jsdl:ApplicationName>

<jsdl:ApplicationVersion>2.0</jsdl:ApplicationVersion>

<jsdl:Description>DEFAUL_RUNTIME=5500</jsdl:Description>
 </jsdl:Application>

GWD-E August 30, 2009

graap-wg@ggf.org 49

 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="APPLICATION_STD"
wsag:ServiceName="UNICORE6">
 <jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <jsdl:JobDescription>
 <jsdl:Application>
 <jsdl:ApplicationName>Date</jsdl:ApplicationName>

<jsdl:ApplicationVersion>1.0</jsdl:ApplicationVersion>
 </jsdl:Application>
 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="APPLICATION_STD"
wsag:ServiceName="UNICORE6">
 <jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <jsdl:JobDescription>
 <jsdl:Application>
 <jsdl:ApplicationName>POVRay</jsdl:ApplicationName>

<jsdl:ApplicationVersion>3.5</jsdl:ApplicationVersion>
 </jsdl:Application>
 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="APPLICATION_STD"
wsag:ServiceName="UNICORE6">
 <jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <jsdl:JobDescription>
 <jsdl:Application>
 <jsdl:ApplicationName>Bash
shell</jsdl:ApplicationName>

<jsdl:ApplicationVersion>3.1.16</jsdl:ApplicationVersion>
 </jsdl:Application>
 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="APPLICATION_STD"
wsag:ServiceName="UNICORE6">
 <jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <jsdl:JobDescription>
 <jsdl:Application>
 <jsdl:ApplicationName>C shell</jsdl:ApplicationName>

<jsdl:ApplicationVersion>6.14.00</jsdl:ApplicationVersion>
 </jsdl:Application>
 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="APPLICATION_STD"
wsag:ServiceName="UNICORE6">
 <jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <jsdl:JobDescription>

GWD-E August 30, 2009

graap-wg@ggf.org 50

 <jsdl:Application>
 <jsdl:ApplicationName>Korn
shell</jsdl:ApplicationName>
 <jsdl:ApplicationVersion>Version M 1993-12-28
q</jsdl:ApplicationVersion>
 </jsdl:Application>
 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="APPLICATION_STD"
wsag:ServiceName="UNICORE6">
 <jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <jsdl:JobDescription>
 <jsdl:Application>
 <jsdl:ApplicationName>Perl</jsdl:ApplicationName>

<jsdl:ApplicationVersion>5.8.8</jsdl:ApplicationVersion>
 </jsdl:Application>
 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="APPLICATION_STD"
wsag:ServiceName="UNICORE6">
 <jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <jsdl:JobDescription>
 <jsdl:Application>
 <jsdl:ApplicationName>Python
Script</jsdl:ApplicationName>

<jsdl:ApplicationVersion>2.4.2</jsdl:ApplicationVersion>
 </jsdl:Application>
 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </wsag:ServiceDescriptionTerm>
 </wsag:ExactlyOne>
 <wsag:ExactlyOne>
 <wsag:ServiceDescriptionTerm wsag:Name="RESOURCE_STD"
wsag:ServiceName="UNICORE6">
 <jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <jsdl:JobDescription>
 <jsdl:Resources>
 <jsdl:IndividualCPUTime>
 <jsdl:Exact>3600.0</jsdl:Exact>
 </jsdl:IndividualCPUTime>
 <jsdl:IndividualCPUCount>
 <jsdl:Exact>2.0</jsdl:Exact>
 </jsdl:IndividualCPUCount>
 <jsdl:TotalResourceCount>
 <jsdl:Exact>1.0</jsdl:Exact>
 </jsdl:TotalResourceCount>
 </jsdl:Resources>
 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </wsag:ServiceDescriptionTerm>
 </wsag:ExactlyOne>
 </wsag:All>
 </wsag:Terms>
 <wsag:CreationConstraints>

GWD-E August 30, 2009

graap-wg@ggf.org 51

 <wsag:Item wsag:Name="JobDescriptionTypeConstraint">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='RESOURCE_STD']/jsdl:JobDefinition/jsdl:Jo
bDescription</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="JobIdentification"
type="jsdl:JobIdentification_Type" minOccurs="0" maxOccurs="0"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="Application" type="jsdl:Application_Type"
minOccurs="0" maxOccurs="0"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="Resources" type="jsdl:Resources_Type"
minOccurs="1" maxOccurs="1"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="DataStaging" type="jsdl:DataStaging_Type"
minOccurs="0" maxOccurs="0"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item wsag:Name="JobDefinition_ALL">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm/jsdl:JobDefinition</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="JobDescription" minOccurs="1"
maxOccurs="1" type="jsdl:JobDescription_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription@Resources_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='RESOURCE_STD']/jsdl:JobDefinition/jsdl:Jo
bDescription</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="JobIdentification" minOccurs="0"
maxOccurs="0" type="jsdl:JobIdentification_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="Application" minOccurs="0" maxOccurs="0"
type="jsdl:Application_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="Resources" minOccurs="1" maxOccurs="1"
type="jsdl:Resources_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="DataStaging" minOccurs="0" maxOccurs="0"
type="jsdl:DataStaging_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:sequence>

GWD-E August 30, 2009

graap-wg@ggf.org 52

 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Resources@Resources_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='RESOURCE_STD']/jsdl:JobDefinition/jsdl:Jo
bDescription/jsdl:Resources</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="IndividualCPUTime" minOccurs="1"
maxOccurs="1" type="jsdl:RangeValue_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="IndividualCPUCount" minOccurs="1"
maxOccurs="1" type="jsdl:RangeValue_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="TotalResourceCount" minOccurs="1"
maxOccurs="1" type="jsdl:RangeValue_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Resources_IndividualCPUTime@R
esources_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='RESOURCE_STD']/jsdl:JobDefinition/jsdl:Jo
bDescription/jsdl:Resources/jsdl:IndividualCPUTime</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="UpperBoundedRange" minOccurs="0"
maxOccurs="0" type="jsdl:Boundary_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="LowerBoundedRange" minOccurs="0"
maxOccurs="0" type="jsdl:Boundary_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="Exact" minOccurs="0" maxOccurs="1"
type="jsdl:Exact_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="Range" minOccurs="0" maxOccurs="0"
type="jsdl:Range_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Resources_IndividualCPUTime_E
xact@Resources_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='RESOURCE_STD']/jsdl:JobDefinition/jsdl:Jo
bDescription/jsdl:Resources/jsdl:IndividualCPUTime/jsdl:Exact</wsag:L
ocation>
 <wsag:ItemConstraint>

GWD-E August 30, 2009

graap-wg@ggf.org 53

 <xs:minInclusive value="1.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema"/>
 <xs:maxInclusive value="86400.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema"/>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Resources_IndividualCPUCount@
Resources_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='RESOURCE_STD']/jsdl:JobDefinition/jsdl:Jo
bDescription/jsdl:Resources/jsdl:IndividualCPUCount</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="UpperBoundedRange" minOccurs="0"
maxOccurs="0" type="jsdl:Boundary_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="LowerBoundedRange" minOccurs="0"
maxOccurs="0" type="jsdl:Boundary_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="Exact" minOccurs="0" maxOccurs="1"
type="jsdl:Exact_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="Range" minOccurs="0" maxOccurs="0"
type="jsdl:Range_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Resources_IndividualCPUCount_
Exact@Resources_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='RESOURCE_STD']/jsdl:JobDefinition/jsdl:Jo
bDescription/jsdl:Resources/jsdl:IndividualCPUCount/jsdl:Exact</wsag:
Location>
 <wsag:ItemConstraint>
 <xs:minInclusive value="2.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema"/>
 <xs:maxInclusive value="2.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema"/>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Resources_TotalResourceCount@
Resources_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='RESOURCE_STD']/jsdl:JobDefinition/jsdl:Jo
bDescription/jsdl:Resources/jsdl:TotalResourceCount</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="UpperBoundedRange" minOccurs="0"

GWD-E August 30, 2009

graap-wg@ggf.org 54

maxOccurs="0" type="jsdl:Boundary_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="LowerBoundedRange" minOccurs="0"
maxOccurs="0" type="jsdl:Boundary_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="Exact" minOccurs="0" maxOccurs="1"
type="jsdl:Exact_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="Range" minOccurs="0" maxOccurs="0"
type="jsdl:Range_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Resources_TotalResourceCount_
Exact@Resources_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='RESOURCE_STD']/jsdl:JobDefinition/jsdl:Jo
bDescription/jsdl:Resources/jsdl:TotalResourceCount/jsdl:Exact</wsag:
Location>
 <wsag:ItemConstraint>
 <xs:minInclusive value="1.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema"/>
 <xs:maxInclusive value="10.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema"/>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription@Application_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='APPLICATION_STD']/jsdl:JobDefinition/jsdl
:JobDescription</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="JobIdentification" minOccurs="0"
maxOccurs="0" type="jsdl:JobIdentification_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="Application" minOccurs="1" maxOccurs="1"
type="jsdl:Application_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="Resources" minOccurs="0" maxOccurs="0"
type="jsdl:Resources_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 <xs:element name="DataStaging" minOccurs="0" maxOccurs="0"
type="jsdl:DataStaging_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Application@Application_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-

GWD-E August 30, 2009

graap-wg@ggf.org 55

agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='APPLICATION_STD']/jsdl:JobDefinition/jsdl
:JobDescription/jsdl:Application</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="ApplicationName" minOccurs="0"
maxOccurs="1" type="xs:string"/>
 <xs:element name="ApplicationVersion" minOccurs="0"
maxOccurs="1" type="xs:string"/>
 <xs:element name="Description" minOccurs="0" maxOccurs="1"
type="jsdl:Description_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Application_ApplicationName@A
pplication_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='APPLICATION_STD_1']/jsdl:JobDefinition/js
dl:JobDescription/jsdl:Application</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="ApplicationName" type="xs:string"
fixed="WISDOM-PACK"/>
 <xs:element name="ApplicationVersion" type="xs:string"
fixed="1.0"/>
 <xs:element name="Description" minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="jsdl:Description_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:simpleType>
 </xs:element>
 <xs:any
namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
processContents="strict" minOccurs="0"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Application_ApplicationName@A
pplication_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='APPLICATION_STD_2']/jsdl:JobDefinition/js
dl:JobDescription/jsdl:Application</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="ApplicationName" type="xs:string"
fixed="WISDOM-UNPACK"/>
 <xs:element name="ApplicationVersion" type="xs:string"
fixed="1.0"/>
 <xs:element name="Description" minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="jsdl:Description_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>

GWD-E August 30, 2009

graap-wg@ggf.org 56

 </xs:simpleType>
 </xs:element>
 <xs:any
namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
processContents="strict" minOccurs="0"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Application_ApplicationName@A
pplication_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='APPLICATION_STD_3']/jsdl:JobDefinition/js
dl:JobDescription/jsdl:Application</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="ApplicationName" type="xs:string"
fixed="WISDOM-MKDIR"/>
 <xs:element name="ApplicationVersion" type="xs:string"
fixed="1.0"/>
 <xs:element name="Description" minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="jsdl:Description_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:simpleType>
 </xs:element>
 <xs:any
namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
processContents="strict" minOccurs="0"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Application_ApplicationName@A
pplication_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='APPLICATION_STD_4']/jsdl:JobDefinition/js
dl:JobDescription/jsdl:Application</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="ApplicationName" type="xs:string"
fixed="FDS"/>
 <xs:element name="ApplicationVersion" type="xs:string"
fixed="4.x"/>
 <xs:element name="Description" minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="jsdl:Description_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:simpleType>
 </xs:element>
 <xs:any
namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
processContents="strict" minOccurs="0"/>
 </xs:sequence>
 </wsag:ItemConstraint>

GWD-E August 30, 2009

graap-wg@ggf.org 57

 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Application_ApplicationName@A
pplication_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='APPLICATION_STD_5']/jsdl:JobDefinition/js
dl:JobDescription/jsdl:Application</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="ApplicationName" type="xs:string"
fixed="FlexX"/>
 <xs:element name="ApplicationVersion" type="xs:string"
fixed="2.0"/>
 <xs:element name="Description" minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="jsdl:Description_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">
 <xs:enumeration value="DEFAUL_RUNTIME=5500"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:any
namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
processContents="strict" minOccurs="0"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Application_ApplicationName@A
pplication_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='APPLICATION_STD_6']/jsdl:JobDefinition/js
dl:JobDescription/jsdl:Application</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="ApplicationName" type="xs:string"
fixed="Date"/>
 <xs:element name="ApplicationVersion" type="xs:string"
fixed="1.0"/>
 <xs:element name="Description" minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="jsdl:Description_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:simpleType>
 </xs:element>
 <xs:any
namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
processContents="strict" minOccurs="0"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Application_ApplicationName@A
pplication_SDT">
 <wsag:Location>declare namespace

GWD-E August 30, 2009

graap-wg@ggf.org 58

jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='APPLICATION_STD_7']/jsdl:JobDefinition/js
dl:JobDescription/jsdl:Application</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="ApplicationName" type="xs:string"
fixed="POVRay"/>
 <xs:element name="ApplicationVersion" type="xs:string"
fixed="3.5"/>
 <xs:element name="Description" minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="jsdl:Description_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:simpleType>
 </xs:element>
 <xs:any
namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
processContents="strict" minOccurs="0"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Application_ApplicationName@A
pplication_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='APPLICATION_STD_8']/jsdl:JobDefinition/js
dl:JobDescription/jsdl:Application</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="ApplicationName" type="xs:string"
fixed="Bash shell"/>
 <xs:element name="ApplicationVersion" type="xs:string"
fixed="3.1.16"/>
 <xs:element name="Description" minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="jsdl:Description_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:simpleType>
 </xs:element>
 <xs:any
namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
processContents="strict" minOccurs="0"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Application_ApplicationName@A
pplication_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='APPLICATION_STD_9']/jsdl:JobDefinition/js
dl:JobDescription/jsdl:Application</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">

GWD-E August 30, 2009

graap-wg@ggf.org 59

 <xs:element name="ApplicationName" type="xs:string"
fixed="C shell"/>
 <xs:element name="ApplicationVersion" type="xs:string"
fixed="6.14.00"/>
 <xs:element name="Description" minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="jsdl:Description_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:simpleType>
 </xs:element>
 <xs:any
namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
processContents="strict" minOccurs="0"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Application_ApplicationName@A
pplication_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='APPLICATION_STD_10']/jsdl:JobDefinition/j
sdl:JobDescription/jsdl:Application</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="ApplicationName" type="xs:string"
fixed="Korn shell"/>
 <xs:element name="ApplicationVersion" type="xs:string"
fixed="Version M 1993-12-28 q"/>
 <xs:element name="Description" minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="jsdl:Description_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:simpleType>
 </xs:element>
 <xs:any
namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
processContents="strict" minOccurs="0"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Application_ApplicationName@A
pplication_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='APPLICATION_STD_11']/jsdl:JobDefinition/j
sdl:JobDescription/jsdl:Application</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="ApplicationName" type="xs:string"
fixed="Perl"/>
 <xs:element name="ApplicationVersion" type="xs:string"
fixed="5.8.8"/>
 <xs:element name="Description" minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="jsdl:Description_Type"

GWD-E August 30, 2009

graap-wg@ggf.org 60

xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:simpleType>
 </xs:element>
 <xs:any
namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
processContents="strict" minOccurs="0"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item
wsag:Name="JobDefinition_JobDescription_Application_ApplicationName@A
pplication_SDT">
 <wsag:Location>declare namespace
jsdl='http://schemas.ggf.org/jsdl/2005/11/jsdl';declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:Service
DescriptionTerm[@wsag:Name='APPLICATION_STD_12']/jsdl:JobDefinition/j
sdl:JobDescription/jsdl:Application</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="ApplicationName" type="xs:string"
fixed="Python Script"/>
 <xs:element name="ApplicationVersion" type="xs:string"
fixed="2.4.2"/>
 <xs:element name="Description" minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="jsdl:Description_Type"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>
 </xs:simpleType>
 </xs:element>
 <xs:any
namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
processContents="strict" minOccurs="0"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item wsag:Name="AgreementOffer">
 <wsag:Location>declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element ref="wsag:Name" minOccurs="0" maxOccurs="0"/>
 <xs:element ref="wsag:Context" minOccurs="1"
maxOccurs="1"/>
 <xs:element ref="wsag:Terms" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item wsag:Name="AgreementOffer_Context">
 <wsag:Location>declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Context</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="AgreementInitiator" type="xs:anyType"
minOccurs="0" maxOccurs="0"/>
 <xs:element name="AgreementResponder" type="xs:anyType"
minOccurs="0" maxOccurs="0"/>
 <xs:element name="ServiceProvider"
type="wsag:AgreementRoleType" minOccurs="1" maxOccurs="1"/>

GWD-E August 30, 2009

graap-wg@ggf.org 61

 <xs:element name="ExpirationTime" type="xs:dateTime"
minOccurs="0" maxOccurs="0"/>
 <xs:element name="TemplateId" type="xs:string"
minOccurs="1" maxOccurs="1"/>
 <xs:element name="TemplateName" type="xs:string"
minOccurs="1" maxOccurs="1"/>
 <xs:any
namespace="http://schemas.scai.fraunhofer.de/2008/11/wsag4j/engine"
processContents="strict"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item wsag:Name="AgreementOffer_Context_ServiceProvider">
 <wsag:Location>declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Context/wsag:ServiceProvide
r</wsag:Location>
 <wsag:ItemConstraint>
 <xs:simpleType xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:restriction base="wsag:AgreementRoleType">
 <xs:enumeration value="AgreementResponder"/>
 </xs:restriction>
 </xs:simpleType>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item wsag:Name="AgreementOffer_Terms">
 <wsag:Location>declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms</wsag:Location>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="All" minOccurs="1" maxOccurs="1"
type="wsag:TermCompositorType"/>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>
 <wsag:Item wsag:Name="AgreementOffer_Terms_All">
 <wsag:Location>declare namespace
wsag='http://schemas.ggf.org/graap/2007/03/ws-
agreement';$this/wsag:AgreementOffer/wsag:Terms/wsag:All</wsag:Locati
on>
 <wsag:ItemConstraint>
 <xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:choice maxOccurs="2">
 <xs:element name="ExactlyOne" minOccurs="0" maxOccurs="0"
type="wsag:TermCompositorType"/>
 <xs:element name="OneOrMore" minOccurs="0" maxOccurs="0"
type="wsag:TermCompositorType"/>
 <xs:element ref="wsag:All" minOccurs="0" maxOccurs="0"/>
 <xs:element name="ServiceDescriptionTerm" minOccurs="1"
maxOccurs="1" type="wsag:ServiceDescriptionTermType"/>
 <xs:element name="ServiceReference" minOccurs="0"
maxOccurs="0" type="wsag:ServiceReferenceType"/>
 <xs:element name="ServiceProperties" minOccurs="0"
maxOccurs="0" type="wsag:ServicePropertiesType"/>
 <xs:element name="GuaranteeTerm" minOccurs="0"
maxOccurs="0" type="wsag:GuaranteeTermType"/>
 </xs:choice>
 </xs:sequence>
 </wsag:ItemConstraint>
 </wsag:Item>

GWD-E August 30, 2009

graap-wg@ggf.org 62

 </wsag:CreationConstraints>
</wsag:Template>

