
GWD-R Manuel Pereira, IBM Almaden Research Center
GFS-WG Osamu Tatebe, University of Tsukuba
 Leo Luan, IBM Almaden Research Center
 Ted Anderson, IBM Almaden Research Center
 September 22, 2006

Resource Namespace Service Specification

Status of This Document

This document provides information to the Grid community about resource namespace services.
Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2006). All Rights Reserved.

Abstract

This document describes the specification of the Resource Namespace Service (RNS), which
offers a simple standard way of mapping names to endpoints within a grid or distributed network.
It functions as a Web Services registry that provides name-to-resource mapping. Names are
mapped to endpoint references and are stored in a persistent namespace repository. RNS offers
hierarchical rendering of human-oriented names, which makes resource mappings easily
accessible and usable by human interface applications. It can be employed to manage the
namespace of federated and virtualized data, services, or effectively any resource capable of
being referenced in a grid/web environment. This document proposes a set of operations
describing the port type, functions, and features of the Resource Namespace Service.

Contents

Abstract.. 1

1.1 Introduction ... 2
1.2 Basic Namespace Components.. 2

1.2.1 Virtual Directories... 3
1.2.2 Junctions.. 3

1.3 Resource Namespace Service Port Type... 3
1.3.1 Namespace Operations ... 4

1.4 Operation Faults.. 14
1.4.1 RNSFault ... 14
1.4.2 RNSDirectoryNotEmptyFault ... 14
1.4.3 RNSEntryExistsFault ... 14
1.4.4 RNSEntryNotDirectoryFault ... 14

1.5 Considerations .. 14
1.5.1 Security .. 14
1.5.2 Extensible Resource Properties .. 15
1.5.3 Three-tier Naming .. 15
1.5.4 Unification of Distributed Resource Namespace Services 15
1.5.5 Root-level Names and Resolution Services .. 16
1.5.6 Iterators for Large Directories .. 16
1.5.7 Backup and Namespace Data Management ... 16

Acknowledgements ... 16
Author Information ... 16
Intellectual Property Statement ... 17
Disclaimer .. 17
Full Copyright Notice ... 17
References .. 17

GWD-R September 2006

1.1 Introduction
The Resource Namespace Service, which will henceforth be referred to as RNS, encompasses a multi-
faceted approach for addressing the needs of access to resources within a distributed network or grid by
way of a universal name that ultimately resolves to a meaningful address, with a particular emphasis on
hierarchically managed names that may be used in human interface applications. It enables construction
of a uniform, global, hierarchical namespace [1]. In concept, RNS supports a three-tier naming
architecture, which consists of human interface names, logical references, and endpoint references (see
“Three-tier Naming” in the considerations section).

RNS is intended to facilitate namespace, or registry, services for a wide variety of Grid applications and
can be employed to manage the namespace of federated and virtualized data, services, or effectively any
resource capable of being referenced in a grid/web environment.

The practical necessity of conveniently accessing the growing number of Web services, corresponding
applications, service artifacts and other service resources, has manifest an escalating need for a
generalized resource namespace service. Additionally, the ever-increasing appreciation for resource
virtualization has amplified the benefits of this service, which is capable of maintaining a name to multi-
address mapping, since the namespace thereby virtualizes all endpoint references or resource addresses.

The reader is assumed to be familiar with Web Services in general, document style messaging, and
SOAP [4].

Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described
in RFC2119.

When describing abstract data models, this specification uses the notational convention used by the XML
Infoset [XML Infoset]. Specifically, abstract property names always appear in square brackets (e.g.,
[some property]).

When describing concrete XML schemas [XML Schema Part 1, Part 2], this specification uses the
notational convention of WS-Security [WS-Security]. Specifically, each member of an element’s [children]
or [attributes] property is described using an XPath-like notation (e.g.,
/x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of an element wildcard
(<xs:any/>). The use of @{any} indicates the presence of an attribute wildcard (<xs:anyAttribute/>).

XML Namespaces
This specification uses a number of namespace prefixes throughout; they are listed in Table 1. Note that
the choice of any namespace prefix is arbitrary and not semantically significant (see [XML Namespaces]).

Prefix Namespace

s11 http://schemas.xmlsoap.org/soap/envelope

Xsd http://www.w3.org/2001/XMLSchema

Wsa http://www.w3.org/2005/03/addressing

Rns http://schemas.ogf.org/rns/2006/09/rns

1.2 Basic Namespace Components
All strings indexed and used as human oriented names within RNS are referred to as namespace entries.
There are two fundamental types of entries described in this document, they are referred to as virtual
directories and junctions. These two basic entry types are further described as follows:

gfs-wg@ogf.org
 2

http://www.ietf.org/rfc/rfc2119.txt

GWD-R September 2006

1.2.1 Virtual Directories
A virtual directory is an RNS entry that is represented as a non-leaf node in the hierarchical namespace
tree. When rendered by a namespace service client, a virtual directory functions similar to that of a
standard filesystem directory or registry key. It is considered virtual because it does not have any
corresponding representation outside of the namespace. A virtual directory, therefore, is purely a
namespace entity that functions in much the same way as a conventional filesystem directory or registry
key by maintaining a list of subentries, which thereby demonstrate a hierarchical relationship. There are
no restrictions regarding the layout of the namespace tree; both virtual directories and junctions can be
nested within nested virtual directories recursively.

A virtual directory may be considered analogous to a collection, category, or context—to the extent that
these terms are used in most directory, registry, or catalogue contexts. Virtual directories do not have
any time or space existence outside of the namespace and strictly serve to facilitate hierarchy.
Namespace hierarchies offer categorization or grouping of entries, by presenting the illusion of
compartments, which may contain sub-compartments as well as junctions.

1.2.2 Junctions
A junction is an RNS entry that interconnects a reference to an existing resource into the hierarchical
namespace. Junctions represent a name-to-resource mapping that is composed of a human oriented
index key or “name” that maps to an endpoint reference. The endpoint reference may refer to any
addressable resource, which includes other namespace entries, as well as names or unique identifiers to
be resolved by other resolution service, as well as definitive target consumable resource. All compliant
RNS implementations MUST embody the target information of a namespace junction within a valid WS-
Addressing [2] Endpoint Reference (EPR).

1.2.2.1 Entry Name Restrictions
Entry names are composed of a simple string of human readable characters. Since certain characters
serve special purposes both within the namespace service and within a number of systems that may use
this service, this section describes the mandatory restrictions for all entry names*:

Names MUST NOT…

1.2.2.1.1 Contain any of the following characters:
\ / : ; * ? “ < > |

1.2.2.1.2 Contain any non-readable characters, such as the carriage return (ANSI 13) or line
feed (ANSI 10) or tab (ANSI 9)

1.2.2.1.3 Be greater than 255 characters in length (Unicode)

Names SHOULD…

1.2.2.1.4 Accommodate Unicode characters

1.2.2.1.5 Be easily readable by a human user, suggesting less than 32 characters per name

Names MAY…

1.2.2.1.6 Contain space (ANSI 32) characters

* Notice these restrictions apply to entry names and are not describing paths. Paths are constructed of
one or more entry names separated by the forward slash character (/). (see “Pathnames” in the
Considerations section).

1.3 Resource Namespace Service Port Type
The Resource Namespace Service port type enables Web Services access to named resources arranged
in a hierarchical manifestation. As a result, the RNS port type is composed of simple namespace entry
operations that enable the construction of and access to a hierarchical mapping of named resources.

gfs-wg@ogf.org
 3

GWD-R September 2006

The RNS port type embodies the following operations:

 add(string: entry_name, EndpointReferenceType: entry_reference)

 list(string: entry_name_regexp)

 move(EndpointReferenceType: parent, string: entry_name)

 query()

 remove(string: entry_name_regexp)

1.3.1 Namespace Operations
The following is a comprehensive list of operations that MUST be implemented to be compliant with the
RNS namespace port type (RNSPortType) specification.

1.3.1.1 add
This operation is used to define a new name-to-resource mapping, or a virtual directory, to be created and
persistently stored by the service host. The name provided will be mapped to the endpoint reference
specified and stored as a sub-entry within the directory this operation is executed against.

If the entry name specified matches an existing entry name already registered as a sub-entry of the
current operating virtual directory, then an RNSEntryExistsFault MUST be returned. Equality matching
SHOULD be case specific, in other words the names should be found to match exactly with an existing
entry before a fault is returned.

If the value of the entry reference is empty then a virtual directory entry will be created instead of a
junction.

This operation modifies namespace repository content and therefore SHOULD support update semantics
that ensure atomic updates to namespace content.

<rns:add>
 <rns:entry_name> xsd:string </rns:entry_name>
 {any}*
 <rns:entry_reference>
 wsa:EndpointReferenceType
 </rns:entry_reference>
</rns:add>

The components of the add request message are further described as follows:

/rns:add/entry_name

This name to be used as the human interface name for this namespace entry. This name will be
displayed, as specified, as a sub-entry within the operating directory.

/rns:add/entry_reference

The WS-Addressing EndpointReferenceType to be registered as the corresponding reference of
the name specified. This effectively represents the resource that the name is mapping to. This
resource might be another namespace entry, a logical abstract identifier to be resolved by
another service, or an endpoint reference to a consumable resource.*

* RNS does not distinguish between types of reference used.

gfs-wg@ogf.org
 4

GWD-R September 2006

The response to the add request message, all of whose components were successfully processed,
MUST be a message of the following form:

<rns:addResponse>
 <rns:entry_reference>
 wsa:EndpointReferenceType
 </rns:entry_reference>
</rns:addResponse>

The component of the addResponse response message is further described as follows:

/rns:addResponse/entry_reference

A WS-Addressing EndpointReferenceType that refers to the newly added namespace entry.

1.3.1.1.1 Example SOAP Encoding of the add Message Exchange
Below is a simple example of how to register a namespace entry named “foo”—that maps to an endpoint
reference that refers to some service or resource—within directory “A”.

The following is a non-normative example of an add message using SOAP 1.1:

<s11:Envelope
xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsa=”http://www.w3.org/2005/03/addressing”
xmlns:rns=”http://schemas.ogf.org/rns/2006/09/rns”>

 <s11:Header>
 <wsa:Action>
 http://schemas.ogf.org/rns/2006/09/rns/add

</wsa:Action>
 <wsa:To s11:mustUnderstand=”1”>
 http://abc.com/rns/A

</wsa:To>
 </s11:Header>

 <s11:Body>

 <rns:add>
<rns:entry_name> foo </rns:entry_name>
<rns:entry_reference>

 <wsa:Address> http://xyz.com/misc/foo </wsa:Address>
</rns:entry_reference>

</rns:add>
 </s11:Body>
</s11:Envelope>

The following is a non-normative example of an addResponse message using SOAP 1.1:

<s11:Envelope
xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsa=”http://www.w3.org/2005/03/addressing”
xmlns:rns=”http://schemas.ogf.org/rns/2006/09/rns”>

 <s11:Header>
 <wsa:Action>
 http://schemas.ogf.org/rns/2006/09/rns/addResponse

</wsa:Action>
 <wsa:To>
 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:To>

gfs-wg@ogf.org
 5

GWD-R September 2006

 </s11:Header>

 <s11:Body>

 <rns:addResponse>
<rns:entry_reference>

 <wsa:Address> http://abc.com/rns/A/foo </wsa:Address>
</rns:entry_reference>

</rns:addResponse>
 </s11:Body>
</s11:Envelope>

1.3.1.2 list
This operation is used to render a list of sub-entries associated with the current operating directory. A
subset of entries may be returned when a regular expression pattern is used to identify the entries to be
included in the subset. Notice that the list returned strictly represents the respective list of entries,
registered as sub-entries (or child entries) of the current operating directory, at the point in time in which
the request message was received.

A compliant service implementation MUST be capable of handling an optional string argument
(rns:entry_name_regexp) used to accommodate regular expression statements intended to identify a
subset of sub-entries to be listed. This specification does not specify any particular regular expression
notation or syntax.

If this operation is executed against a namespace junction, then an RNSEntryNotDirectoryFault MUST be
returned.

<rns:list>
<rns:entry_name_regexp> xsd:string </rns:entry_name_regexp>

</rns:list>

The components of the list request message are further described as follows:

/rns:list/entry_name_regexp

An optional string used to identify a subset of entries to be listed. The value of this string MAY be
empty, in which case a comprehensive listing of the sub-entries is returned; otherwise the value
of this string is intended to represent a regular expression statement that distinguishes a
particular subset of entries to be returned.

The response to the list request message, all of whose components were successfully processed,
MUST be a message of the following form:

<rns:listResponse>
 rns:EntryList
</rns:listResponse>

The component of the listResponse response message is further described as follows:

/rns:EntryList

This is a “complex type” message that embodies the entire entry list, including associated entry
attributes. Details of the rns:EntryList message are described below.

1.3.1.2.1 EntryList Complex Type

<rns:EntryList>

gfs-wg@ogf.org
 6

GWD-R September 2006

 <rns:entry>
 <rns:entry_name> xsd:string </rns:entry_name>
 {any}*
 <rns:entry_reference>
 wsa:EndpointReferenceType
 </rns:entry_reference>
 </rns:entry>*
</rns:EntryList>

The components of the rns:EntryList message are further described as follows:

/rns:EntryList/entry

A single entry enclosing all associated attributes of the entry within sub-elements.

/rns:EntryList/entry/entry_name

The name of the entry represented.

/rns:EntryList/entry/entry_reference

The WS-Addressing EndpointReferenceType of the entry represented; this is the endpoint
reference that is mapped to the entry name.

1.3.1.2.2 Example SOAP Encoding of the list Message Exchange

Below is a simple example of how to list all sub-entries of the current operating directory “A”.

The following is a non-normative example of a list message using SOAP 1.1:

<s11:Envelope
xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsa=”http://www.w3.org/2005/03/addressing”
xmlns:rns=”http://schemas.ogf.org/rns/2006/09/rns”>

 <s11:Header>
 <wsa:Action>
 http://schemas.ogf.org/rns/2006/09/rns/list

</wsa:Action>
 <wsa:To s11:mustUnderstand=”1”>
 http://abc.com/rns/A

</wsa:To>
 </s11:Header>

 <s11:Body>

 <rns:list>
<rns:entry_name_regexp> </rns:entry_name_regexp>

</rns:list>
 </s11:Body>
</s11:Envelope>

The following is a non-normative example of a listResponse message using SOAP 1.1:

gfs-wg@ogf.org

<s11:Envelope
xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsa=”http://www.w3.org/2005/03/addressing”
xmlns:rns=”http://schemas.ogf.org/rns/2006/09/rns”>

 <s11:Header>
 <wsa:Action>
 http://schemas.ogf.org/rns/2006/09/rns/listResponse

</wsa:Action>
 <wsa:To>

 7

GWD-R September 2006

 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous
</wsa:To>

 </s11:Header>

 <s11:Body>

 <rns:listResponse>
 <rns:EntryList>
 <rns:entry>
 <rns:entry_name> foo </rns:entry_name>

<rns:entry_reference>
 <wsa:Address> http://xyz.com/misc/foo </wsa:Address>

</rns:entry_reference>
 </rns:entry>
 <rns:entry>
 <rns:entry_name> bar </rns:entry_name>

<rns:entry_reference>
 <wsa:Address> http://123.com/bar </wsa:Address>

</rns:entry_reference>
 </rns:entry>
 </rns:EntryList>

</rns:listResponse>
 </s11:Body>
</s11:Envelope>

1.3.1.3 move
This operation is used to move or rename an existing entry. The object of this operation is the current
service endpoint, which may be a virtual directory or a namespace junction. The parameters used in this
operation reflect destination values for the current entry.

The destination can be specified by an entry name and the parent directory. If the parent directory
specified is not a virtual directory, then an RNSEntryNotDirectoryFault MUST be returned. If the parent
directory specified is not managed by the same RNS service of the current service endpoint, then an
RNSCrossServiceFault MUST be returned.

This operation modifies namespace repository content and therefore SHOULD support update semantics
that ensure atomic updates to namespace content.

<rns:move>
 <rns:entry_parent>
 wsa:EndpointReferenceType
 </rns:entry_parent>
 <rns:entry_name> xsd:string </rns:entry_name>
</rns:move>

The components of the move request message are further described as follows:

/rns:move/entry_parent

The WS-Addressing EndpointReferenceType that identifies the virtual directory to which this entry
should be moved. If the value of this element refers to the current parent directory, or if no value
is specified, the hierarchical position of this entry within the namespace will remain unchanged.

/rns:move/entry_name

This element identifies the value of the name this entry should be renamed to. If the value of this
element reflects the current name of the entry, or if no value is specified, the name of this entry
will remain unchanged.

gfs-wg@ogf.org
 8

GWD-R September 2006

Notice that at least one of the elements should be specified for any action to take place. Optionally both
elements may be specified to accomplish both a hierarchical move as well as an entry rename within a
single transaction.

The response to the move request message, all of whose components were successfully processed,
MUST be a message of the following form:

<rns:moveResponse>
 <rns:entry_reference>
 wsa:EndpointReferenceType
 </rns:entry_reference>
</rns:moveResponse>

The component of the moveResponse response message is further described as follows:

/rns:moveResponse/entry_reference

A WS-Addressing EndpointReferenceType that refers to the newly moved/renamed namespace
entry.

1.3.1.3.1 Example SOAP Encoding of the move Message Exchange

Below is a simple example of how to rename a namespace entry from “foo” to “bar”.

The following is a non-normative example of a move message using SOAP 1.1:

<s11:Envelope
xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsa=”http://www.w3.org/2005/03/addressing”
xmlns:rns=”http://schemas.ogf.org/rns/2006/09/rns”>

 <s11:Header>
 <wsa:Action>
 http://schemas.ogf.org/rns/2006/09/rns/move

</wsa:Action>
 <wsa:To s11:mustUnderstand=”1”>
 http://abc.com/rns/A/foo

</wsa:To>
 </s11:Header>

 <s11:Body>

 <rns:move>
<rns:entry_name> bar </rns:entry_name>

</rns:move>
 </s11:Body>
</s11:Envelope>

The following is a non-normative example of a moveResponse message using SOAP 1.1:

<s11:Envelope
xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsa=”http://www.w3.org/2005/03/addressing”
xmlns:rns=”http://schemas.ogf.org/rns/2006/09/rns”>

 <s11:Header>
 <wsa:Action>
 http://schemas.ogf.org/rns/2006/09/rns/moveResponse

</wsa:Action>
 <wsa:To>

gfs-wg@ogf.org
 9

GWD-R September 2006

 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous
</wsa:To>

 </s11:Header>

 <s11:Body>

 <rns:moveResponse>
<rns:entry_reference>

 <wsa:Address> http://abc.com/rns/A/bar </wsa:Address>
</rns:entry_reference>

</rns:moveResponse>
 </s11:Body>
</s11:Envelope>

1.3.1.4 query
This operation is used to query, or get the properties of, an existing name-to-resource mapping. This
operation simply returns all of the registered properties associated with a namespace entry (name-to-
resource mapping), including an endpoing reference to the parent directory entry. This operation differs
from the list operation in that the list operation is executed against a virtual directory entry for the purpose
of retrieving a list of sub-entries and their associated properties, whereas this operation is executed
against any namespace entry for the purpose of retrieving all associated properties and an endpoint
reference to the parent directory of the entry. Retrieving an endpoint reference to the parent directory is
particularly useful when traversing the namespace hierarchy upward (often referred to as “backward
lookup”).

If this operation is executed against a root node in the namespace hierarchy, then an endpoint reference
to itself SHOULD be returned.

<rns:query />

There are no argument elements specified by this operation.

The response to the query request message MUST be a message of the following form:

<rns:queryResponse>
 rns:EntryProperties
</rns:queryResponse>

The component of the queryResponse response message is further described as follows:

/rns:EntryProperties

This is a “complex type” message that embodies all of the properties associated with the entry,
including an endpoint reference to the virtual directory that is represented as the parent directory
in the namespace hierarchy. Details of the rns:EntryProperties message are described
below.

1.3.1.4.1 EntryProperties Complex Type

<rns:EntryProperties>
 <rns:entry_parent>
 wsa:EndpointReferenceType
</rns:entry_parent>

 <rns:entry_name> xsd:string </rns:entry_name>
 {any}*
 <rns:entry_reference>

gfs-wg@ogf.org
 10

GWD-R September 2006

gfs-wg@ogf.org
 11

 wsa:EndpointReferenceType
 </rns:entry_reference>
</rns:EntryProperties>

The components of the rns:EntryProperties message are further described as follows:

/rns:EntryProperties/entry_parent

The WS-Addressing EndpointReferenceType referring to the parent virtual directory entry of the
entry represented.

/rns:EntryProperties/entry_name

The name of the entry represented.

/rns:EntryProperties/entry_reference

The WS-Addressing EndpointReferenceType of the entry represented; this is the endpoint
reference that is mapped to the entry name.

1.3.1.4.2 Example SOAP Encoding of the query Message Exchange

Below is a simple example of how to query a namespace entry named “foo”.

The following is a non-normative example of a query message using SOAP 1.1:

<s11:Envelope
xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsa=”http://www.w3.org/2005/03/addressing”
xmlns:rns=”http://schemas.ogf.org/rns/2006/09/rns”>

 <s11:Header>
 <wsa:Action>
 http://schemas.ogf.org/rns/2006/09/rns/query

</wsa:Action>
 <wsa:To s11:mustUnderstand=”1”>
 http://abc.com/rns/A

</wsa:To>
 </s11:Header>

 <s11:Body>

 <rns:query />
 </s11:Body>
</s11:Envelope>

The following is a non-normative example of a queryResponse message using SOAP 1.1:

<s11:Envelope
xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsa=”http://www.w3.org/2005/03/addressing”
xmlns:rns=”http://schemas.ogf.org/rns/2006/09/rns”>

 <s11:Header>
 <wsa:Action>
 http://schemas.ogf.org/rns/2006/09/rns/queryResponse

</wsa:Action>
 <wsa:To>
 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:To>
 </s11:Header>

 <s11:Body>

 <rns:queryResponse>

GWD-R September 2006

 <rns:EntryProperties>
 <rns:entry_parent>
 <wsa:Address> http://abc.com/rns/A </wsa:Address>
 </rns:entry_parent>
 <rns:entry_name> foo </rns:entry_name>

<rns:entry_reference>
 <wsa:Address> http://xyz.com/misc/foo </wsa:Address>

</rns:entry_reference>
 </rns:EntryProperties>

</rns:queryResponse>
 </s11:Body>
</s11:Envelope>

1.3.1.5 remove
This operation is used to remove, or “unlink”, an existing name-to-resource mapping. A compliant service
implementation MUST be able to perform string equality comparisons to determine if the string specified
represents a sub-entry to be removed. A compliant service implementation MAY also implement regular
expression capabilities to enable the identification of multiple sub-entries in a single remove request
message.

If the sub-entry specified represents a virtual directory, then the designated virtual directory MUST NOT
have any subentries associated with it; otherwise an RNSDirectoryNotEmptyFault MUST be returned.

This operation modifies namespace repository content and therefore SHOULD support update semantics
that ensure atomic updates to namespace content.

<rns:remove>
 <rns:entry_name> xsd:string </rns:entry_name>
</rns:remove>

The components of the remove request message are further described as follows:

/rns:remove/entry_name

The name of the sub-entry to be removed from the operating directory. This operation will
dissolve the association of the name-to-resource mapping, therefore removing both entry name
and entry reference from the service’s persistent data store.

The value of this string MAY embody regular expression for the purpose of identifying more than
one sub-entry.

The response to the remove request message, all of whose components were successfully processed,
MUST be a message of the following form:

<rns:removeResponse>
 rns:EntryList
</rns:removeResponse>

The component of the removeResponse response message is further described as follows:

/rns:EntryList

This is a “complex type” message that embodies the entire list of entries that were successfully
removed, including respective entry attributes. Details of the rns:EntryList message are
described in section 1.3.1.2.1.

gfs-wg@ogf.org
 12

GWD-R September 2006

1.3.1.5.1 Example SOAP Encoding of the remove Message Exchange
Below is a simple example of how to remove a namespace entry from “foo”.

The following is a non-normative example of a remove message using SOAP 1.1:

<s11:Envelope
xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsa=”http://www.w3.org/2005/03/addressing”
xmlns:rns=”http://schemas.ogf.org/rns/2006/09/rns”>

 <s11:Header>
 <wsa:Action>
 http://schemas.ogf.org/rns/2006/09/rns/remove

</wsa:Action>
 <wsa:To s11:mustUnderstand=”1”>
 http://abc.com/rns/A

</wsa:To>
 </s11:Header>

 <s11:Body>

 <rns:remove>
<rns:entry_name> foo </rns:entry_name>

</rns:remove>
 </s11:Body>
</s11:Envelope>

The following is a non-normative example of a removeResponse message using SOAP 1.1:

<s11:Envelope
xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsa=”http://www.w3.org/2005/03/addressing”
xmlns:rns=”http://schemas.ogf.org/rns/2006/09/rns”>

 <s11:Header>
 <wsa:Action>
 http://schemas.ogf.org/rns/2006/09/rns/removeResponse

</wsa:Action>
 <wsa:To>
 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:To>
 </s11:Header>

 <s11:Body>

 <rns:removeResponse>
 <rns:EntryList>
 <rns:entry>
 <rns:entry_name> foo </rns:entry_name>

<rns:entry_reference>
 <wsa:Address> http://xyz.com/misc/foo </wsa:Address>

</rns:entry_reference>
 </rns:entry>
 </rns:EntryList>

</rns:removeResponse>
 </s11:Body>
</s11:Envelope>

gfs-wg@ogf.org
 13

GWD-R September 2006

1.4 Operation Faults
This section describes the use of faults in RNS. All RNS defined faults are based on Web Services
standards, being fully compliant with WS-BaseFault [7]. This approach ensures all fault messages are
constructed and handled in a common, standard complaint, way.

An RNS compliant implementation MUST employ all of the following faults:

1.4.1 RNSFault
This is the base fault defined by the RNS specification, providing a “superclass” for all other RNS faults.

Extends wsbf:BaseFaultType

Element Description

Path String representation of the current working path where the service
encountered the fault.

1.4.2 RNSDirectoryNotEmptyFault
This fault MUST be returned when a remove operation is executed against a virtual directory that has
sub-entries associated with it.

Extends RNSFault

1.4.3 RNSEntryExistsFault
This fault MUST be returned when an add operation attempts to create an entry that already exists within
the same virtual directory.

Extends RNSFault

1.4.4 RNSEntryNotDirectoryFault
This fault MUST be returned when a list operation is executed against an entry that is not a directory, or
when the destination directory specified in a move operation is not a directory.

Extends RNSFault

1.4.5 RNSCrossServiceFault
This fault MUST be returned when a move operation attempts to move to an entry that is not managed by
the same RNS service of the current service endpoint.

Extends RNSFault

1.5 Considerations
This section includes several significant points to consider when composing a profile designed to render
RNS for a specific application or purpose. These considerations are also pertinent to implementers of
such namespace services, offering a small list of factors that might prove to be critical to security,
performance, scalability, usability, and the overall efficiency of a namespace service.

1.5.1 Security
The topic of security as a whole is not discussed in this specification document. Nevertheless, security
remains crucial to the protection of sensitive information. Information integrity and privacy are included in
this consideration. Security is recognized as a substantial necessity in nearly all OGSA services. RNS is
intended to function with independent security solutions made available by the Web Services and OGSA
communities.

gfs-wg@ogf.org
 14

GWD-R September 2006

1.5.1.1 Access Control Lists
Although this document does not discuss access control lists (ACLs), there has been noteworthy
discussion regarding, their purpose, scope, representation, and enforcement in RNS. There are two
fundamental levels of consideration: (1) access control to namespace information and (2) access control
to the target resource that the namespace refers to. The latter case most often is protected independent
of the namespace referring to it.

1.5.2 Extensible Resource Properties
The ability to manage the number and type of resource properties, or namespace entry attribute fields, in
a dynamic run-time fashion would offer a more efficient and flexible way to take an RNS compliant
implementation and deploy it in various environments, potentially with disparate profiles applied, all
without changing the run-time implementation.

1.5.3 Three-tier Naming
RNS is intended to operate in harmony with other resolution services to facilitate a comprehensive
naming and registry service that is composed of three-tiers. A three-tiered naming architecture supports
two levels of indirection. The first level of indirection is realized by mapping human interface names
directly to endpoint references or resource reference addresses. Since the properties of the endpoint
reference may be modified without altering the namespace entries that refer to them, this simple
approach offers a convenient means of name-to-resource mapping with a single level of indirection or
resource virtualization. A second level of indirection may be appreciated when mapping human interface
names to logical references (identified by logical/abstract references or unique identifiers), which in turn
map logical references to endpoint references and hence the second level of indirection. The advantage
of using a logical name to represent a logical reference is that logical names may be referenced and
resolved independent of the hierarchical namespace. This means that logical names may be used as a
globally unique logical resource identifier and be referenced directly by both the RNS namespace as well
as other services.

1.5.4 Unification of Distributed Resource Namespace Services
RNS is intended to be capable of facilitating widely distributed namespaces, with the ultimate capability of
a global namespace. A global namespace service directly implies the employment of a multitude of
namespace servers by virtue of geographical distribution, segregated domains of ownership and control,
scalability, and redundancy/availability. A principal goal of a global namespace service is to provide a
location independent view of consistent access paths to resources. Since these access paths are
represented by hierarchal path names, symbolizing a globally unique identifier to a given resource, it is a
natural extension of the design to consider an architecture that federates multiple namespace servers in a
hierarchical fashion. Similar to the well established DNS model, RNS service providers can be interlinked
by referrals whilst providing a seamless and transparent view of the namespace.

1.5.4.1 Distributed of Namespace Repositories
A namespace service that accommodates scalability, redundancy/availability, and geographic
dissemination implicitly necessitates the distribution of servers in a grid or network. Duplicate or replica
copies of namespace content, which embody namespace entries and their associated properties, may
need to be distributed within a network and therefore the specification of the namespace service must
mandate provisions to make such configurations possible. Though this specification does mandate such
provisions, it does not mandate where or how namespace repository data is stored. Therefore,
coherency between redundant and delegated RNS services remains a detail that should be addressed at
some level, for example within a profile rendering document or an implementation design document.

gfs-wg@ogf.org
 15

GWD-R September 2006

1.5.4.2 Pathnames
In the context of federating RNS instances, the concept of paths and pathnames are relied upon heavily.
In this context, a path is the route to a particular entry within the namespace, denoted by a string of
characters signifying a series of names (representing namespace entries) that are separated by a
delimiting character (the forward slash “/”). A pathname is the path of a namespace entry used as a
potentially global unique identifier or “qualified name”; path and pathname may be used synonymously in
this document.

1.5.4.3 Resolution Spanning Namespace Services
Once several instances of the namespace service are interlinked, the most obvious challenge is related to
path name resolution when dealing with paths that cross repository boundaries.

1.5.5 Root-level Names and Resolution Services
To realize a globally scalable, universal and federated namespace, conventions for root-level resolution
service providers may need to be established. Root-level names and resolution services may be
considered analogous to the management, governing authority, and distribution and support of “top-level
domains” and root servers in DNS. The implication of configuring and utilizing root level RNS services
includes at least the following considerations:

• Governing authority of root level names – There may need to be leveraged/established an

organization that will take responsibility for root-level names, for example ICANN [8].
• Root-level RNS service providers – Currently in the IP realm, DNS servers are most typically

distributed and maintained by several volunteer organizations.
• Discovery and designation – Applications that utilize the RNS namespace may need to incorporate

some type of preliminary mechanism to identify what root-level RNS service provider it should
communicate with, this could be as simple as a configuration file and as sophisticated as UDDI.

1.5.6 Iterators for Large Directories
Since RNS is intended to facilitate namespace and registry services for a wide variety of service
consumers, many of which may potentially store information in very large directories or registry keys; this
presents a significant performance impediment. In an effort to reduce this obstruction, we suggest using
an interactive, stateful, iterator that is capable of rendering segments of a complete list of entries. Ideally,
the iterator should be capable of maintaining a position marker that is capable of advancing forward and
backward within the result set list.

1.5.7 Backup and Namespace Data Management
Backup and management of RNS data is recommended but is not described in this document. Backup
and management details will ultimately be implementation and potentially deployment specific.

Acknowledgements
Takuya Ishibashi (SOUM)

Author Information
Manuel Pereira1, Leo Luan, Ted Anderson
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120, USA
manuel@trinitybiblechurch.org
leoluan@us.ibm.com
ota@us.ibm.com

gfs-wg@ogf.org

1 This author's work related to this document was conducted during his prior employment with IBM.

 16

GWD-R September 2006

Osamu Tatebe
Department of Computer Science, University of Tsukuba
1-1-1 Tennodai, Tsukuba
Ibaraki 3058573 Japan
tatebe@cs.tsukuba.ac.jp

Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it represent
that it has made any effort to identify any such rights. Copies of claims of rights made available for
publication and any assurances of licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this
recommendation. Please address the information to the OGF Executive Director.

Disclaimer
This document and the information contained herein is provided on an “As Is” basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use of the
information herein will not infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

Full Copyright Notice

Copyright (C) Open Grid Forum (2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to the OGF or
other organizations, except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the OGF Document process must be followed, or as
required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

References

[1] Leo Luan and Ted Anderson, “Grid Namespace for Files”, GGF working draft, GGF8, 2003
https://forge.gridforum.org/projects/gfs-wg/document/Grid_Namespace_for_Files/en/1

[2] Web Services Addressing 1.0 – Core (W3C Working Draft 31 March 2005)
http://www.w3.org/TR/ws-addr-core/

[3] Web Services Resource Properties (WS-ResourceProperties) Version 1.2 06/10/2004

gfs-wg@ogf.org
 17

GWD-R September 2006

http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-04.pdf

[4] Simple Object Access Protocol (SOAP) 1.1 (W3C Note 08 May 2000)
http://www.w3.org/TR/2000/NOTE-SOAP-20000508

[5] OGSA Basic Profile 1.0
https://forge.gridforum.org/projects/ogsa-wg/document/draft-ggf-ogsa-wsrf-basic-profile/en/20

[6] XML Schema Part 2: Datatypes Second Edition
http://www.w3.org/TR/xmlschema-2/

[7] (WS-BaseFaults) Web Services Base Faults 1.2 (Working Draft 02, June 24, 2004)
http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-02.pdf

[8] Internet Corporation For Assigned Names and Numbers
http://www.icann.org/

[WSDL]
Web Services Description Language (WSDL) 1.1
http://www.w3.org/TR/wsdl

[XML Namespaces]
W3C Recommendation “Namespaces in XML”, Tim Bray, Dave Hollander, Andrew Layman, 14 January,
1999
http://www.w3.org/TR/1999/REC-xml-names-19990114/

[WS-BaseNotification 1.2]
Web Service Base Notification 1.2 (Working Draft 03, 21 June 2004)
http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-03.pdf

gfs-wg@ogf.org
 18

	1.1 Introduction
	1.2 Basic Namespace Components
	1.2.1 Virtual Directories
	1.2.2 Junctions
	1.2.2.1 Entry Name Restrictions

	1.3 Resource Namespace Service Port Type
	1.3.1 Namespace Operations
	1.3.1.1.1 Example SOAP Encoding of the add Message Exchange
	1.3.1.2.1 EntryList Complex Type
	1.3.1.2.2 Example SOAP Encoding of the list Message Exchange
	1.3.1.3.1 Example SOAP Encoding of the move Message Exchange
	1.3.1.4.1 EntryProperties Complex Type
	1.3.1.4.2 Example SOAP Encoding of the query Message Exchange
	1.3.1.5.1 Example SOAP Encoding of the remove Message Exchange

	1.4 Operation Faults
	1.4.1 RNSFault
	1.4.2 RNSDirectoryNotEmptyFault
	1.4.3 RNSEntryExistsFault
	1.4.4 RNSEntryNotDirectoryFault
	1.4.5 RNSCrossServiceFault

	1.5 Considerations
	1.5.1 Security
	1.5.1.1 Access Control Lists

	1.5.2 Extensible Resource Properties
	1.5.3 Three-tier Naming
	1.5.4 Unification of Distributed Resource Namespace Services
	1.5.4.1 Distributed of Namespace Repositories
	1.5.4.2 Pathnames
	1.5.4.3 Resolution Spanning Namespace Services

	1.5.5 Root-level Names and Resolution Services
	1.5.6 Iterators for Large Directories
	1.5.7 Backup and Namespace Data Management

	Acknowledgements
	Author Information
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

