
GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

GridFTP v2 Protocol Description

Status of this Document

This document is a Global Grid Forum Draft. It presents the result of research and
development work performed by GridFTP WG based on the analysis of GridFTP v1
protocol summarized in GridFTP Protocol Improvements document [GFD.21] It
describes extensions and modifications of GridFTP v1 protocol. GridFTP v1 definition
together with this document should be used as definition of GridFTP v2 protocol.

Copyright Notice

Copyright © Global Grid Forum (2002). All Rights Reserved

Abstract
The GridFTP [GFD.20] protocol has become a popular data movement tool used to
build distributed grid-oriented applications. The GridFTP protocol extends the FTP
protocol defined by [RFC959] and extended in some other IETF documents by adding
certain features designed to improve the performance of data movement over a wide
area network, to allow the application to take advantage of “long fat” communication
channels, and to help build distributed data handling applications.

Several groups have developed independent implementations of the GridFTP v1
protocol for different types of applications. The experience gained by these groups
uncovered several drawbacks of the GridFTP v1 protocol. They were summarized in
GGF draft [GFD.21]. This document proposes modifications of the protocol which are
supposed to address the majority of the issues found.

ivm@fnal.gov 1

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

Contents
1 Preface ... 3
2 eXtended Block (X-Block) Mode .. 3

2.1 Basic Ideas .. 3
2.2 Data Streaming .. 4
2.3 Data Block Format... 4
2.4 Data Channel Protocol ... 5

2.4.1 Opening Data Channel ...6
2.4.2 Closing Data Channel...6
2.4.3 Data Retransmission..8

2.5 Dynamic Network Resources Allocation .. 9
2.6 End of File Communication ..10

2.6.1 Active Receiver ... 10
2.6.2 Passive Receiver ... 10
2.6.3 Passive Sender ... 11
2.6.4 Active Sender ... 11

2.7 Dynamic Resource Allocation ...11
2.7.1 Active Sender ... 11
2.7.2 Active Receiver ... 11
2.7.3 Passive Sender ... 12
2.7.4 Passive Receiver ... 12

2.8 Data Channel Command Syntax ...12
3 GET/PUT Commands ..13

3.1 Command Syntax...13
3.2 Examples of Communication ..14

4 Explicit EOF Communication in Stream mode...15
5 Checksum Transmission ...16

5.1 CKSM ...16
5.2 SCKS ...16

6 Checksum Algorithms...17
7 Options and Features Negotiation ..17

7.1 OPTS..17
7.1.1 Checksum Calculation .. 17
7.1.2 EOF Communication in Stream Mode.. 18

7.2 FEAT ..18
8 Security Considerations ..18
Intellectual Property Statement...18
Full Copyright Notice ...19
References...20

ivm@fnal.gov 2

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

1 Preface
The GridFTP protocol was developed by Global Grid Forum as an extension of IETF
FTP protocol standard [RFC959]. Several groups of Grid software developers
implemented version 1.0 of the GridFTP protocol [GFD.20] and released a document
summarizing their experiences [GFD.21]. That document lists a number of
drawbacks found in the GridFTP v1.0 and possible ways to improve the protocol.

This document is the result of the research conducted by the GridFTP working group.
It proposes version 2.0 of the GridFTP protocol which is supposed to be extension
and improvement of the GridFTP v1.0. This document discusses only additions to
[GFD.20], but does not supersede it.

2 eXtended Block (X-Block) Mode
eXtended block mode (or simply X mode) is further development of Extended block
mode (E mode) introduced in GridFTP v1.0 standard [GFD.20]. X-mode is developed
to fix certain drawbacks of E mode [GFD.21] and add some useful features such as:

• Remove so called unidirectional data transfers limitation
• Add more flexibility in dynamic management of network connections as a

resource
• Add data integrity verification on the network transport level

Standard RFC959 MODE command should be used with “X” argument to switch into
this mode:

 MODE X CRLF

If this mode is supported by the server, it replies with 2xx response.

2.1 Basic Ideas
The proposed solution is based on the following ideas:

It is believed that the reason for so called “unidirectional data transfer” limitation of
E mode [GFD.20] is a potential race condition in the process of opening and closing
of (initially unknown) number of data channels between the sender and the receiver.
In order to remove this limitation, we introduce “READY”, “CLOSE” and “BYE”
messages sent over each data channel in the direction opposite to the data flow.
These messages replace use of EODC message of E mode and provide explicit and
reliable mechanism for data channel opening and closing.

Instead of using EODC flag of E mode, we use the same flag bit 64 to signal end of
file.

We introduce checksum value sent along with each data block so that the receiver
can verify data integrity and immediately request retransmission of the block if an
error is detected. The receiver sends “RESEND” message back to the sender on the
same data channel but in the direction opposite to the data flow. Sender and receiver

ivm@fnal.gov 3

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

will use OPTS/FEAT mechanism to negotiate concrete type of the checksum prior to
the data transfer.

2.2 Data Streaming
Data streaming allows multiple files to be transferred over the same data channel or
set of parallel channels at the same time. Streaming can be used to reduce the
inefficiency caused by the file transfer initiation overhead. In order to allow data
streaming, X-block mode header has new field called Transaction ID. Client specifies
the transaction ID when it initiates the data transfer (see GET/PUT commands
description). It is responsibility of the client to make sure that the same transaction
ID is not used for two concurrent data transfers. If streaming is not used, transaction
ID field must be 0.

For example, this is how it can be done in case of two files:

Client Server
GET path=file.a;tid=1;port=…
 1xx tid=1; OK
 (opens new data channel and starts sending
 data for file.a)
GET path=file.b;tid=2;port=…
 1xx tid=2; OK
 (opens new data channel and starts sending
 data for file.b)
 (two files are being transferred in
 parallel over 2 data channels)
 (transfer of file.b completes)
 2xx tid=2; Transfer complete
 (transfer of file.a completes)
 2xx tid=1; Transfer complete

2.3 Data Block Format
Data block format is almost the same as for E mode. Two fields are new:

• Transaction ID is used by the client to identify specific file in case of data
streaming

• The only difference is that if data integrity verification is turned on (using
OPTS mechanism), each data block is followed by checksum value calculated
over the block header and data. Length of the checksum value is determined
by previously negotiated checksum type. If checksum calculation is not turned
on, then no checksum value is appended to the end of the block. Data block
format is:

ivm@fnal.gov 4

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

Field Length,

bytes
Contents

Descriptor 1 Block descriptor. Bits in the descriptor are:
64 – End of file (EOF)
8 – End of data (EOD) – request to close this data
channel
4 – Sender will close this data channel instead of
reusing it

Byte count 8 Length of data
Offset 8 Offset of the block in the file
Transaction ID 4 Transaction ID – 32 bit integer
Data <byte

count>,
can be 0

Data

Checksum depends
on the
type, can
be 0

Value of the checksum calculated over header and
data

2.4 Data Channel Protocol
Proposed data channel protocol is outlined in Fig. 1 and 2 for active and passive
sender cases respectively

Fig. 1

ivm@fnal.gov 5

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

Fig. 2

2.4.1 Opening Data Channel
When passive data receiver accepts new incoming connection on the data socket, it
must acknowledge data channel opening with “READY” message sent on newly
created data channel socket to data source. Active data sender does not send any
data on the data channel until it receives “READY” message. This procedure ensures
that active sender and passive receiver hosts use the same number of data channels
for the transaction and essentially makes it unnecessary to send channel count in
EODC message.

Passive receiver may close new data socket without sending “READY” message or
even stop accepting new connections. No data will be lost in such cases because the
sender will not send any data before receiving “READY” message.

In general case of many-to-many striped transfer, active peer must open at least
one data channel to each passive peer host. This is necessary to make sure that
even if there is no data to be sent to or received from one of passive hosts it does
not have to wait forever for the transfer to begin.

2.4.2 Closing Data Channel
There are two cases when a data channel may be closed under normal
circumstances:

• There is no more data to send on the channel, i.e. the sender has reached
end of file

• Either sender or receiver closes one or more data channels in the middle of
transfer, e.g. to control bandwidth utilization

ivm@fnal.gov 6

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

Data Channel Closed by the Sender
Before closing a data channel socket (either at the end of the file or in the middle of
the transfer), data sender (active or passive) must send EOD message as defined by
extended block mode protocol on the data channel. Data receiver acknowledges EOD
message with “BYE” message sent back on the data channel. This acknowledgement
is used by the sender to ensure that all the data sent on this channel was
successfully received.

Depending on the implementation, the sender may choose not to wait for “BYE”
acknowledgement. The sender is allowed to close data channels immediately after
sending EOD, and the receiver may get a socket error trying to send “BYE” message
back to the sender. As long and the receiver receives EOD on all data channels, and
end of file is properly communicated (see End of File Communication section below),
the failure to send “BYE” on one or more data channels should not be treated as an
error condition by the receiver.

After sending “BYE” message the receiver may close the data channel or keep it open
to reuse in future transfers. Likewise, after receiving “BYE” the sender may choose to
close the data channel or keep it open.

Data Channel Closed by the Receiver
If the receiver wishes to close a data channel in the middle of the transfer, it must
send “CLOSE” message on the data channel (see Fig. 3). How often the sender
checks for the “CLOSE” messages is determined by the sender’s implementation.
Although this would not be the best way to implement the protocol, it may even
choose not to check for them until the end of transfer. That is why after sending
“CLOSE” message, the receiver must continue receiving the data from the data
channel until it receives EOD block. Only after receiving EOD block, the receiver
sends “BYE” message on the channel and then may close the channel.

ivm@fnal.gov 7

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

Fig. 3

2.4.3 Data Retransmission
If the receiver detects an error in a block transmission, it can request that the sender
resends the block. To request block retransmission the receiver sends “RESEND”
command on the same data channel where the erroneous block was received:

ivm@fnal.gov 8

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

Fig. 4

After detecting a transmission error in one of data blocks and sending “RESEND”
command, the receiver should continue receiving data.

It is possible that the bad block will be retransmitted after EOD is received. The
receiver should not send final “BYE” and close the data channel until it receives all
blocks it requested to be retransmitted.

The sender does not necessarily have to resend requested data in single block or
even on the same data channel. It may split it into several blocks if necessary.

If the sender does not support resend functionality, it should abort the transfer in
any way, for example by closing the data channel without waiting for “BYE”
message. The receiver will treat this condition as a transmission error.

2.5 Dynamic Network Resources Allocation
The X mode protocol allows dynamic re-allocation of such resources as network
bandwidth and socket file descriptors by allowing peers to open and close data
channels dynamically during data transfer without any data loss. For example, the
following scenario is possible:

ivm@fnal.gov 9

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

1. N data channels are established and the file transfer begins
2. Some additional resources such as network bandwidth or system file

descriptors become available
3. Active peer opens one or more additional data channels
4. Data is being transferred at higher rate
5. Demand for resources increases
6. Sender closes one or more data channels by sending EOD message or the

receiver requests closing one or more data channels by sending “CLOSE”
message

7. The data transfer continues and finishes at lower rate

The only limitation here is that the passive peer cannot open or request opening new
data channels. Only active peer can do that. If the protocol is fully implemented on
both sides, either peer can gracefully shut down some number of open data
channels.

2.6 End of File Communication
End of file is signaled by sending (possibly empty) block with EOD and EOF flags set
in the block descriptor. The transfer between individual sender and receiver hosts is
considered finished successfully after last data channel between them is closed with
EOD and the receiver host received at least one EOF block on at least one data
channel established between the two hosts. In general case of many-to-many
striping, EOF block must be sent on at least one data channel for every sender-
receiver pair. EOF communication is described in more details for each type of host.

2.6.1 Active Receiver
After receiving EOF block from a sender host, active data receiver host must not try
to open any new data channels to that sender host. It must continue receiving data
on all previously open data channels until it receives EOD block on the channel. The
receiver host may try to open new data channels to other sender hosts, those it has
not received EOF from. In case of striped transfer, the receiver must attempt to open
at least one data channel to each sender host. However, as long as at least one data
channel to at least one of sender hosts was opened successfully, just the failure to
open more channels should not be considered an error by the receiver as long as the
sender is still capable of sending the whole file over available channel or channels.
For example if only one data channel opened successfully, all the data will have to be
sent over that single channel.

The transfer is considered finished successfully by active receiver after all data
channels are closed and at least one EOF block was received from each sender host.

2.6.2 Passive Receiver
Passive receiver host must be receiving data on all open channels until it receives
EOD on all channels with EOF on at least one of them. When EOF is received on one
of data channels, passive receiver is allowed to stop accepting new data channel
connections.

ivm@fnal.gov 10

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

The transfer is considered finished successfully after all open data channels were
closed with EOD and at least one EOF block was received by each receiving host.

2.6.3 Passive Sender
Passive sender sends EOD on all open data channels with EOF bit set on at least one
data channel per receiver host. In case when it is impossible for the sender to
distinguish between connections coming from different receiving hosts, sender may
simply send EOF on all open data channels.

The transfer is considered successfully finished when all data was sent and all data
channels were closed and the receiver acknowledged all channel closures with “BYE”
messages.

2.6.4 Active Sender
Active sender sends EOD on all open data channels and EOF at least on one per
receiving host. To avoid possible race condition and ambiguities, sender must not
send EOF on any data channel until it receives “READY” on all open channels.

In case of striped transfer, the sender must open at least one data channel to each
receiver host and send at least EOD and EOF block to each host even if there is no
data to be sent to the host.

The transfer is considered successfully finished when all data was sent and all data
channels were closed and the receiver acknowledged all channel closures with “BYE”
messages.

2.7 Dynamic Resource Allocation
For some applications, it is desired that such resources as network bandwidth, CPU
power and open I/O channels (file descriptors) can be dynamically allocated and
reallocated between concurrent transfers. Proposed protocol allows for new data
channels to be open and closed in the middle of transfer without data loss or
corruption. There are provisions for active or passive sender or receiver to open,
close or refuse to open new data channel at any time during transfer.

2.7.1 Active Sender
Active sender can control number of open data channels by opening and closing
them at any time. The receiver acknowledges new data channel with “READY”
message that allows the sender to start using the new channel. At any time active
sender can close any data channel after sending EOD block and optionally receiving
“BYE” as the acknowledgement.

2.7.2 Active Receiver
Active receiver can control number of open data channels by opening and closing
them at any time. The sender may or may not send any data on newly open channel.

ivm@fnal.gov 11

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

Once the channel is open by the active receiver, it may close it at any time, but only
after sending “CLOSE” message and receiving EOD block. The receiver must keep the
channel open and continue receiving data until EOD block is received on the channel.

2.7.3 Passive Sender
Passive sender, naturally, cannot open new data channels, so it cannot increase
bandwidth utilization by adding new channels. It can only decrease bandwidth
utilization by:

• Closing data socket port thus refusing new data connections
• Closing newly opened data connection before sending any data on the

channel
• Sending EOD and closing the data channel
• Sending EOD, waiting for “BYE” and closing the data channel

Existing data channel can be closed at any time after sending EOD block and
optionally waiting for “BYE”.

2.7.4 Passive Receiver
Passive receiver can decrease bandwidth utilization by:

• Closing data socket port and refusing new data connections
• Closing newly opened data connection before sending “READY”
• Sending “CLOSE” as a request to close the data channel

Once “READY” message was sent to the sender, passive receiver must receive all
data sent on the channel until it receives EOD block or the sender closes the channel.

2.8 Data Channel Command Syntax
This section describes the format of commands sent by the data receiver on the data
channel socket. General format is text terminated with carriage return, linefeed
combination or just linefeed:

<DC command> = <keyword> [<parameters>] [CR] LF

Commands and their parameters are:

READY (no parameters)
The receiver sends READY command after the data channel is open to allow the
sender to start sending the data.

CLOSE (no parameters)
Data receiver sends this command when it needs to close the data channel. The
receiver must continue receiving data even after sending CLOSE command until it
receives EOD block.

BYE (no parameters)
This command must be sent by the receiver to allow the sender to close the data
channel. It acknowledges that the receiver has successfully received all the data sent
on this data channel. If the sender needs such acknowledgement, it should not close
the data channel until it receives “BYE” command. The receiver closes the channel
right after it sends “BYE”.

ivm@fnal.gov 12

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

RESEND <offset> <length> [<tid>]
The receiver uses this command to request retransmission of a data block. Offset
and length are ASCII strings representing decimal numbers for block offset within
the file and its length. Optional third argument is used to specify the transaction ID
in case of data streaming.

3 GET/PUT Commands
GET and PUT commands are introduced as an alternative to RETR and STOR in order
to eliminate the drawback of RFC959 FTP protocol that requires that the server sends
the address of data channel socket in response to PASV command before it even
knows what file is about to be transferred. The idea is to include all necessary
information for the server to be able to initiate the transfer into single command, and
have the server use (multiple) 1xx replies to convey such information as data socket
address before actual transfer begins.

GET and PUT commands combine functionality of PRET, PORT/PASV, and then STOR
and RETR respectively.

3.1 Command Syntax

 GET <parameter> [=<value>]; […] CRLF
 PUT <parameter> [=<value>]; […] CRLF

<parameter> is a single keyword without spaces in the middle. <value> is optional,
it can be either one word or multiple words, terminated with semicolon. Single
command can have multiple parameter/value pairs on the same line. The command
is terminated with CRLF sequence. This document introduces the following
parameters:

• mode – Possible values are “S”, “B”, “E” or “X” – for Stream, Block, Extended
and eXtended block transfer modes. Unless MODE command was sent prior to
the GET/PUT, mode argument must be specified.

• port – used by the client to convey data socket address in “active” mode.
Parameter value is data port address specification in standard form:
“a,b,c,d,e,f” where “a,b,c,d” is IP address of the data host and “e,f” are upper
and lower bytes of the port number. If some other port address was
previously sent with separate PORT command, that value gets discarded and
the value of this argument will be used as the port address.

• pasv – specifies that the transfer should be performed in “passive” mode, and
that the server must send “1xx PORT=a,b,c,d,e,f” before actual transfer can
begin. This parameter provides the same functionality as RFC959 PASV
command. If PASV command was used prior to the GET or PUT command,
and the server has already replied to it with some data port address, it still
must send the data port address in 1xx response. In this case, the port
address sent in 1xx response overrides the one sent previously. Unless PORT
or PASV command was sent prior to the GET/PUT command, GET/PUT
command must include either “port” or “pasv” argument. Currently, “1xx
PORT=…” is the only 1xx response with documented syntax, which must be

ivm@fnal.gov 13

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

recognized by the client. All other 1xx responses are purely informational, and
can be ignored.

• cksum – if mode X is used for this transfer, cksum parameter specifies what
algorithm should be used for block checksum calculation. Parameter value is
the keyword specifying the algorithm. Keyword “NONE” should be used for
none. This argument overrides any arrangement previously negotiated using
OPTS mechanism for single transfer.

• path – path to the file to be transferred. This is required parameter.
• tid – transaction ID. If specified, and X-block mode is used for the transfer,

this transaction ID must appear in every block of file data. If S, B or E mode
is used, this parameter is ignored. If not specified, transaction ID is assumed
to be 0.

3.2 Examples of Communication

Active file retrieval in Stream mode:

Client Server
GET path=/tmp/file.dat;port=34,23,45,12,48,14;mode=s;
 1xx Data connection established
 2xx Transfer complete

Passive file retrieval in E mode:

Client Server
GET path=/tmp/file.dat;pasv;mode=e;
 1xx wait
 1xx wait
 1xx PORT=134,23,145,2,48,114
 1xx Data connection established
 2xx Transfer complete

Passive file upload in X mode with MD5 signature calculation:

Client Server
PUT path=/tmp/file.dat;pasv;mode=x;chksum=md5;
 1xx wait
 1xx wait
 1xx PORT=134,23,145,2,48,114
 1xx Data connection established
 2xx Transfer complete

This is equivalent to the following exchange:

Client Server
OPTS PUT CKSUM MD5
 2xx OK, will use MD5 for subsequent xfers
PASV
 2xx PORT=134,23,145,2,48,110
MODE X
 2xx OK, Will use X mode
PUT path=/tmp/file.dat;pasv;mode=x;
 1xx will use MD5 for this transfer
 1xx wait for port

ivm@fnal.gov 14

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

 1xx PORT=134,23,145,2,48,114
 1xx Data connection established
 2xx Transfer complete

as you can see, the client used OPTS to set default checksum algorithm for the
session to NONE, and then overrode this default for this single transfer using
“cksum” argument. Client sent PASV command and received some data port address,
but then used “pasv” argument with PUR command. Apparently, server discarded
previously assigned data port and created new one and sent it with 1xx PORT=…
reply.

4 Explicit EOF Communication in Stream mode
In order to allow the server to detect client shutdown in the middle of the file upload
and not to treat data socket disconnection as normal end of file, EOF command is
introduced. This command has no parameters, so its syntax is simple:

 EOF CRLF

If the EOF command functionality is switched on by previously issued OPTS
command (see Options and Features Negotiation section below), then the client must
issue EOF command after successful file upload before closing control channel:

Client Server
STOR file.dat
 1xx Opening data socket

(client sends data)

(client closes data channel at the end of file)

 2xx data transferred

EOF
 2xx OK, transfer acknowledged
 (server considers the transfer successful)

(client disconnects control channel)

Here is an example of how the server would detect abnormal client disconnection:

Client Server
STOR file.dat
 1xx Opening data socket

(client sends some data)

(client crashes in the middle of transfer)

 (server detects end of data socket)

 2xx data transferred

 (server detects end of control socket.
 because EOF was never received,
 server discards the file as incomplete)

ivm@fnal.gov 15

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

In order to maintain backward compatibility with old clients, this functionality is
turned off by default. Client turns it on using OPTS mechanism.

5 Checksum Transmission
Two commands are introduced for data integrity verification

5.1 CKSM
This command is used by the client to request checksum calculation over a portion or
whole file existing on the server. The syntax is:

 CKSM <algorithm> <offset> <length> <path> CRLF

Server executes this command by calculating specified type of checksum over
portion of the file starting at the offset and of the specified length. If length is –1,
the checksum will be calculated through the end of the file. On success, the server
replies with

 2xx <checksum value>

Actual format of checksum value depends on the algorithm used, but generally,
hexadecimal representation should be used.

5.2 SCKS
This command is sent prior to upload command such as STOR, ESTO, PUT. It is used
to convey to the server that the checksum value for the file which is about to be
uploaded. At the end of transfer, server will calculate checksum for the received file,
and if it does not match, will consider the transfer to have failed. Syntax of the
command is:

 SCKS <algorithm> <value> CRLF

Actual format of checksum value depends on the algorithm used, but generally,
hexadecimal representation should be used.

Here is an example of how this command can be used to detect a transmission error:

ivm@fnal.gov 16

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

Client Server
SCKS CRC32 1f345630
 2xx OK, will remember that
STOR file.dat
 1xx Opening data socket
(client sends data)
 (server calculates CRC as it
 receives the data)
(client closes data channel at the end of file)
 (server compares calculated CRC value with
 the one received earlier with SCKS command
 and detects mismatch)
 4xx CRC mismatch – data corruption detected

6 Checksum Algorithms

The following describes a few of the popular checksum algorithms, assigns the
algorithm names and specifies the format and length of the checksum, to be used in
X-Blocks, and its string representations to be used with the CKSM and SCKSM
commands.

Adler32 Checksum is described in rfc1950 [rfc1950] and is a 32 bit (4 byte) integer.
The reserved name for the Adler32 Checksum is ADLER32. The checksum is
represented as a hexadecimal number (8 hexadecimal digit string).

MD5 Checksum is described in rfc1321 [rfc1321] and is a 128 bit (16 byte) integer.
The reserved name for the MD5 Checksum is MD5. The checksum is represented as a
hexadecimal number (32 hexadecimal digit string).

Cyclic Redundancy Checksum (CRC32) is defined by ISO 3309 [iso-3309] and is a 32
bit (4 byte) integer. A sample implementation of the algorithm is given in PNG
Specification [png]. The reserved name for the CRC32 Checksum is CRC32. The
checksum is represented as a hexadecimal number (8 hexadecimal digit string).

7 Options and Features Negotiation

7.1 OPTS
OPTS command should be used by the client and server to negotiate options for
further transfers.

7.1.1 Checksum Calculation
Client negotiates specific checksum calculation algorithm to be used for all
subsequent transfers performed during this session with the following OPTS
subcommand:

ivm@fnal.gov 17

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

 OPTS (RETR|STOR|ERET|ESTO|GET|PUT) CKSM <algorithm> CRLF

Where <algorithm> is the keyword specifying actual checksum calculation algorithm
to be used in X-block mode. Suggested keywords are:

• ADLER32 – for Adler32 algorithm
• MD5 – for MD5
• NONE – to specify that no checksum calculation should be performed

If the server supports specified algorithm, it replies with 2xx response. Otherwise –
with 5xx or 4xx, in which case, no checksum will be calculated during subsequent
transfers.

7.1.2 EOF Communication in Stream Mode
Client requests the server to use explicit EOF notification at the end of Stream mode
upload using

 OPTS (STOR|PUT) EOF CRLF

If the server supports this option, it replies with 2xx response, and explicit EOF
confirmation as described above will be turned on for subsequent Stream mode
uploads.

7.2 FEAT
As described in [rfc2389], FEAT is used by the client to find out what features are
supported by the server. This document introduces the following FEAT items:

 CKSUM <algorithm>[, …]
 EOF
 MODEX
 GETPUT
 STREAMING

CKSUM keyword is used to specify checksum algorithms supported by the server.

EOF, MODEX, GETPUT and STREAMING are used to indicate that the server supports
explicit end of file communication in Stream mode, X-block transfer mode, GET/PUT
commands and data streaming respectively.

8 Security Considerations
As an extension to GridFTP v1.0 protocol, v2.0 inherits all security-related features of
its predecessor such as strong client authentication based on GSI and Kerberos
mechanisms.

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property
or other rights that might be claimed to pertain to the implementation or use of the

ivm@fnal.gov 18

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

technology described in this document or the extent to which any license under such
rights might or might not be available; neither does it represent that it has made any
effort to identify any such rights. Copies of claims of rights made available for
publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such
proprietary rights by implementers or users of this specification can be obtained from
the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents
or patent applications, or other proprietary rights which may cover technology that
may be required to practice this recommendation. Please address the information to
the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (date). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copyright
notice or references to the GGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for
copyrights defined in the GGF Document process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the
GGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis
and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

ivm@fnal.gov 19

GWD-R-P (Proposed Recommendation) I. Mandrichenko, FNAL, editor
GridFTP WG W. Allcock, ANL
 T.Perelmutov, FNAL
 June 2004
 Revised:04/25/2005

References
[GFD.20] W Allcock, et all, GridFTP: Protocol Extensions to FTP

for the Grid,
April 2003
http://www.ggf.org/documents/GWD-R/GFD-R.020.pdf

[GFD.21] Igor Mandrichenko, GridFTP Protocol Improvements,
 July 11, 2003

http://www.ggf.org/documents/GWD-I-E/GFD-E.021.pdf

[rfc959] J.Postel, J.Reynolds, File Transfer Protocol (FTP),

IETF RFC959, October 1985
http://www.ietf.org/rfc/rfc0959.txt?number=959

[rfc2389] Hethmon, P. and Elz, R.,

Feature negotiation mechanism for the File Transfer Protocol,
IETF RFC2389, August 1998
http://www.ietf.org/rfc/rfc0959.txt?number=2389

[rfc1950] P. Deutsch, J-L. Gailly,
ZLIB Compressed Data Format Specification version 3.3
IETF RFC1950, May 1996
http://www.ietf.org/rfc/rfc1950.txt

[rfc1321] R.Rivest,
The MD5 Message-Digest Algorithm,
IETF RFC1321, April 1992
http://www.ietf.org/rfc/rfc1321.txt

[png] David Duce,
Portable Network Graphics (PNG) Specification (Second Edition)
November 2003
http://www.w3.org/TR/2003/REC-PNG-20031110

[iso-3309] ISO/IEC 3309:1993, Information Technology —
Telecommunications and information exchange between
systems — High-level data link control (HDLC) procedures —
Frame structure.

ivm@fnal.gov 20

http://www.ggf.org/documents/GWD-R/GFD-R.020.pdf
http://www.ietf.org/rfc/rfc0959.txt?number=959
ftp://ftp.isi.edu/in-notes/rfc2389.txt
http://www.ietf.org/rfc/rfc0959.txt?number=2389
http://www.ietf.org/rfc/rfc1950.txt
http://www.ietf.org/rfc/rfc1950.txt
http://www.w3.org/TR/2003/REC-PNG-20031110

	Preface
	eXtended Block (X-Block) Mode
	Basic Ideas
	Data Streaming
	Data Block Format
	Data Channel Protocol
	Opening Data Channel
	Closing Data Channel
	Data Channel Closed by the Sender
	Data Channel Closed by the Receiver

	Data Retransmission

	Dynamic Network Resources Allocation
	End of File Communication
	Active Receiver
	Passive Receiver
	Passive Sender
	Active Sender

	Dynamic Resource Allocation
	Active Sender
	Active Receiver
	Passive Sender
	Passive Receiver

	Data Channel Command Syntax

	GET/PUT Commands
	Command Syntax
	Examples of Communication

	Explicit EOF Communication in Stream mode
	Checksum Transmission
	CKSM
	SCKS

	Checksum Algorithms
	Options and Features Negotiation
	OPTS
	Checksum Calculation
	EOF Communication in Stream Mode

	FEAT

	Security Considerations
	Intellectual Property Statement
	Full Copyright Notice
	References

