
GWD-R H. Nakada, NIAIST
Category: Recommendation S. Matsuoka, Tokyo Institute of Tech.
GridRPC Working Group K. Seymour, Univ. of Tenn., Knoxville

J. Dongarra, Univ. of Tenn., Knoxville
C. Lee, The Aerospace Corp.
H. Casanova, UCSD, SDSC

September 23, 2004

A GridRPC Model and API for End-User Applications

Status of This Memo
This document provides information to the Grid community on a proposed model and API for a grid-enabled
remote procedure call. This is a WORKING DRAFT document. It does not currently define any standards or
technical recommendations. Distribution is unlimited.

Copyright Notice
Copyright (C) Global Grid Forum (2004). All Rights Reserved.

Abstract

This document presents a model and API for GridRPC, i.e., a remote procedure call (RPC) mechanism for
grid environments. Specifically this document is targeted for end-user applications, not middleware. That is to
say, this document presents a simpler version of the GridRPC model and API that is completely sufficient for
end-users and does not include the more complex features and capabilities required for building middleware. As
a Recommendations track document in the Global Grid Forum, the goal of this document is to clearly and unam-
biguously define the syntax and semantics for GridRPC, thereby enabling a growing user base to take advantage
of multiple implementations. The motivation for this document is to provide an easy avenue of adoption for grid
computing, since (1) RPC is an established distributed computing paradigm, and (2) there is a growing user-
base for network-enabled services. By doing so, this document will also facilitate the development of multiple
implementations.

GWD-R (Recommendation) September 23, 2004

1. Introduction

The goal of this document is to clearly and unambiguously define the syntax and semantics for GridRPC, a
remote procedure call (RPC) mechanism for grid environments, thereby providing an avenue of easy access to grid
computing. Specifically this document is targeted for end-user applications that do not require the more complex
features and capabilities required for middleware packages. As such, it is outside the scope of this document to
review or discuss those issues related to middleware, or the important issues related to network-enabled services
or to provide any kind of tutorial information. Nonetheless, a Related Work section is provided to capture many
references and pointers to relevant works that have lead up to this document. A preliminary version of this model
and API appeared as [16]. A longer version of that paper is available as [17].

2. The Basic GridRPC Model

Figure 1. The Basic GridRPC Model.

Figure 1 illustrates the basic GridRPC model. The functions shown here are very fundamental and, hence,
appear in many other systems. A service registers with a registry. A client subsequently contacts the registry to
look-up a desired service and the registry returns a handle to the client. The client then uses the handle to call the
service which eventually returns the results.

In the GridRPC terminology adopted here, the service handle is a function handle which represents a mapping
from a simple, flat function name string to an instance of that function on a particular server. Once a particular
function-to-server mapping has been established by initializing a function handle, all RPC calls using that function
handle will be executed on the server specified in that binding. A session ID is an identifier representing a
particular non-blocking GridRPC call. The session ID is used throughout the API to allow users to obtain the
status of a previously submitted non-blocking call, to wait for a call to complete, to cancel a call, or to check the
error code of a call.

3. Document Scope

This simple, common model nonetheless represents multiple fundamental issues. It is clearly impossible to
deal with them all at the same time. Hence, we now clarify what this document defines and does not define.

3.1 In Scope

This document focuses on just defining the API and the minimal programming model needed to understand
and use the API for end-user applications. More specifically, it focuses on simple, client-server interaction since
this comprises the majority of usage scenarios.

lee@aero.org [Page 2]

GWD-R (Recommendation) September 23, 2004

3.2 Out of Scope

The following topics are very important but are nonetheless out of the scope of this document:

• Middleware. Middleware must be able to deal with situations that don’t typically arise in end-user code,
e.g., a variable number of arguments in a specific GridRPC call that is not known until call time.

• Service Discovery. How the actual service registry or look-up is done is not addressed in this document. It
is assumed that some type of registry or grid information service is available to accomplish this function.

• Non-flat Service Names. The current API assumes simple name strings for GridRPC services. Describing
and discovering GridRPC services by attributes or metadata schemas would certainly be very useful but is
not addressed here.

• General Workflow. Defininf general mechanisms for managing grid workflows are not in the scope of
this document. Simple extensions to the API may be possible, however, that allow the use of workflow
management tools.

• Interoperability between Implementations. Since this document focuses on the GridRPC API, it says
nothing about the protocols used to communicate between clients, servers, and registries. Hence, it does
not address interoperability.

4. The GridRPC API

We begin the presentation of the GridRPC API by defining the data types used. We then present the initializa-
tion/finalization calls, function handle management calls, the function calls themselves, and the control and wait
calls. Each call definition includes a table of possible error codes that it can return.

4.1 GridRPC Data Types

grpc function handle t
Variables of this data type represent a specific remote function that has been bound to a specific server. They
are allocated by the user. After a function handle is initialized, it may be used to invoke the associated remote
function as many times as desired. The lifetime of a function handle is determined when the user invalidates the
function handle with a handle destruct call.

grpc sessionid t
Variables of this data type represent a specific non-blocking GridRPC call. Session IDs are used to probe or wait
for call completion, to cancel a call, or to check the error status of a call. Session IDs are also allocated by the
user but their lifetime is determined automatically. A session ID is initialized when a non-blocking GridRPC call
is made. It is invalidated, or destroyed, when (1) all return arguments have been received, and (2) a wait function
has returned a “call complete” status to the application. If an invalid session ID is passed to any GridRPC call, an
error will result.

grpc error t
This data type is used for all error and return status codes from GridRPC functions.

lee@aero.org [Page 3]

GWD-R (Recommendation) September 23, 2004

4.2 Initializing and Finalizing Functions

The initialize and finalize functions are similar to the MPI initialize and finalize calls. Client GridRPC calls
before initialization or after finalization will fail.

grpc error t grpc initialize(char *config file name)
This function reads the configuration file and initializes the required modules.

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC CONFIGFILE NOT FOUND Specified configuration file not found
GRPC CONFIGFILE ERROR An error occured parsing or processing the configuration file
GRPC OTHER ERROR CODE Internal error detected

grpc error t grpc finalize(void)
This function releases any resources being used by GridRPC.

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC NOT INITIALIZED GRPC client is not initialized yet
GRPC OTHER ERROR CODE Internal error detected

4.3 Remote Function Handle Management Functions

The function handle management group of functions allows the creation and destruction of function handles.

grpc error t grpc function handle default(
grpc function handle t *handle,
char *func name)

This creates a new function handle using a default server associated with the given function name. This default
could be a pre-determined server or it could be a server that is dynamically chosen by the resource discovery
mechanisms of the underlying GridRPC implementation.

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC NOT INITIALIZED GRPC client not initialized yet
GRPC SERVER NOT FOUND GRPC client cannot find any server
GRPC FUNCTION NOT FOUND GRPC client cannot find the function on the default server
GRPC OTHER ERROR CODE Internal error detected

lee@aero.org [Page 4]

GWD-R (Recommendation) September 23, 2004

grpc error t grpc function handle init(
grpc function handle t *handle,
char *server name,
char *func name)

This creates a new function handle with a server explicitly specified by the user.

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC NOT INITIALIZED GRPC client not initialized yet
GRPC SERVER NOT FOUND GRPC client cannot find the specified server
GRPC FUNCTION NOT FOUND GRPC client cannot find the function on the specified server
GRPC OTHER ERROR CODE Internal error detected

Advice to Implementors:
The exact form of the server name string is not specified. One common possibility is a string of the form

“host name:port number”. Another possibility is a string in some resource specification language.
End of Advice to Implementors.

grpc error t grpc function handle destruct(grpc function handle t *handle)
This releases all information and resources associated with the specified function handle.

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC NOT INITIALIZED GRPC client not initialized yet
GRPC INVALID FUNCTION HANDLE Function handle pointed to by handle is not valid
GRPC OTHER ERROR CODE Internal error detected

grpc error t grpc get handle(grpc function handle t **handle, grpc sessionid t sessionId)
This returns the function handle corresponding to the given sessionID (that is, corresponding to that particular
non-blocking request).

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC NOT INITIALIZED GRPC client not initialized yet
GRPC INVALID SESSION ID sessionID is not valid
GRPC OTHER ERROR CODE Internal error detected

4.4 GridRPC Call Functions

Two GridRPC call functions are available for end-users. These two calls are similar but provide either blocking
(synchronous) or non-blocking (asynchronous) behavior. In the non-blocking case, a session ID is returned that
is subsequently used to test for completion.

lee@aero.org [Page 5]

GWD-R (Recommendation) September 23, 2004

grpc error t grpc call(grpc function handle t *handle, <varargs>)
This makes a blocking remote procedure call with a variable number of arguments.

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC NOT INITIALIZED GRPC client not initialized yet
GRPC SERVER NOT FOUND GRPC client cannot find the specified server
GRPC FUNCTION NOT FOUND GRPC client cannot find the function on the specified server
GRPC INVALID FUNCTION HANDLE Function handle pointed to by handle is not valid
GRPC RPC REFUSED RPC invocation refused by the server, possibly because of a

security issue
GRPC COMMUNICATION FAILED Communication with the server failed somehow
GRPC OTHER ERROR CODE Internal error detected

grpc error t grpc call async(
grpc function handle t *handle,
grpc sessionid t *sessionID,
<varargs>)

This makes a non-blocking remote procedure call with a variable number of arguments. A session ID is returned
that can be used to probe or wait for completion, cancel the call, and check for the error status of a call.

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC NOT INITIALIZED GRPC client not initialized yet
GRPC SERVER NOT FOUND GRPC client cannot find the specified server
GRPC FUNCTION NOT FOUND GRPC client cannot find the function on the specified server
GRPC INVALID FUNCTION HANDLE Function handle pointed to by handle is not valid
GRPC RPC REFUSED RPC invocation was refused by the server, possibly because

of a security issue
GRPC COMMUNICATION FAILED Communication with the server failed somehow
GRPC OTHER ERROR CODE Internal error detected

The GridRPC Recommendation does not define which implementation-related operations may be assumed to
be complete when an asynchronous call returns. However, all asynchronous GridRPC calls must return as soon
as possible after it is safe for a user to modify any input argument buffers.

Rationale:
By returning as soon as possible, e.g., before the remote operation has started and before any results are re-

turned, the GridRPC user can overlap the remote computation with other local computation. By allowing the user
to modify any buffers after the asynchronous call returns, we present the user with the safest and simpliest buffer
handling semantics possible. While it may be possible to improve performance further by allowing asynchronous
calls to return before it is safe to modify input argument buffers, it was considered not worth the added complexity
and “danger” for handling buffers. This is the approach taken by current prototype implementations.
End of Rationale.

lee@aero.org [Page 6]

GWD-R (Recommendation) September 23, 2004

4.5 Asynchronous GridRPC Control Functions

The following functions apply only to previously submitted non-blocking requests.

grpc error t grpc probe(grpc sessionid t sessionID)
This call checks whether the asynchronous GridRPC call represented by the session ID sessionID has completed.
If it has completed, GRPC NO ERROR is returned. Otherwise, GRPC NOT COMPLETED is returned.

Error Code Identifier Meaning
GRPC NO ERROR Success (call has completed)
GRPC NOT INITIALIZED GRPC client not initialized yet
GRPC INVALID SESSION ID sessionID is not valid
GRPC NOT COMPLETED Call has not completed
GRPC OTHER ERROR CODE Internal error detected

grpc error t grpc probe or(grpc sessionid t *idArray, size t length, grpc sessionid t *idPtr)
This call checks whether the asynchronous GridRPC calls represented by the array of session IDs in idAr-
ray have completed. If any calls have completed, the function return value is GRPC NO ERROR and
the grpc sessionid t pointed to by *idPtr contains exactly one valid, completed call. If no call has com-
pleted, the function return value is GRPC NONE COMPLETED and the grpc sessionid t pointed to by
*idPtr is undefined. If any of the session IDs in idArray are invalid, no operations will occur and an
GRPC INVALID SESSION ID error will be returned. However, the array of session IDs may contain com-
pleted session IDs without causing an error.

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC NOT INITIALIZED GRPC client not initialized yet
GRPC INVALID SESSION ID A session ID in idArray is not valid
GRPC NONE COMPLETED No calls in idArray have completed
GRPC OTHER ERROR CODE Internal error detected

Rationale:
Users will typically fill a such an array with session IDs and then check for them to finish one by one. Hence,

it will be a common occurrence that such an array may contain completed session IDs. If having a sparse array
presents a performance concern, the user has the option of packing the array themselves.
End of Rationale.

Advice to Implementors:
While this document does not specify the actual representation for grpc sessionid t, it would be possi-

ble for implementations to use some value to denote void or invalid variables of this type that could be used
for internal error-checking. For example, when grpc probe or() returns GRPC NONE COMPLETED, the
grpc sessionid t pointed to by idPtr could actually be set to this void value.
End of Advice to Implementors.

lee@aero.org [Page 7]

GWD-R (Recommendation) September 23, 2004

grpc error t grpc cancel(grpc sessionid t sessionID)
This cancels the specified asynchronous GridRPC call.

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC NOT INITIALIZED GRPC client not initialized yet
GRPC INVALID SESSION ID sessionID is not valid
GRPC OTHER ERROR CODE Internal error detected

grpc error t grpc cancel all(void)
This cancels all outstanding asynchronous GridRPC calls.

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC NOT INITIALIZED GRPC client not initialized yet
GRPC OTHER ERROR CODE Internal error detected

Rationale:
A “cancel array” call was considered but dismissed since it would cause difficult error handling.

End of Rationale.

4.6 Synchronous GridRPC Wait Functions

The following five functions apply only to previously submitted non-blocking requests. These calls allow
an application to express desired non-deterministic completion semantics to the underlying system, rather than
repeatedly polling on a set of session IDs.

Advice to Implementors:
From an implementation standpoint, such information could be conveyed to the OS scheduler to reduce cycles

wasted on polling.
End of Advice to Implementors.

grpc error t grpc wait(grpc sessionid t sessionID)
This blocks until the specified non-blocking requests to complete.

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC NOT INITIALIZED GRPC client not initialized yet
GRPC INVALID SESSION ID sessionID is not valid
GRPC COMMUNICATION FAILED Communication with the server failed somehow
GRPC SESSION FAILED The specified session failed
GRPC OTHER ERROR CODE Internal error detected

lee@aero.org [Page 8]

GWD-R (Recommendation) September 23, 2004

grpc error t grpc wait and(grpc sessionid t *idArray, size t length)
This blocks until all of the specified non-blocking requests in a given set have completed.

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC NOT INITIALIZED GRPC client not initialized yet
GRPC INVALID SESSION ID One or more session IDs in idArray are not valid
GRPC SESSION FAILED One or more sessions failed
GRPC OTHER ERROR CODE Internal error detected

grpc error t grpc wait or(grpc sessionid t *idArray, size t length, grpc sessionid t *idPtr)
This blocks until any of the specified non-blocking requests in idArray has completed. On a successful return,
idPtr points to a completed request.

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC NOT INITIALIZED GRPC client not initialized yet
GRPC INVALID SESSION ID One or more session IDs in idArray are not valid
GRPC SESSION FAILED The session ID pointed to by idPtr failed
GRPC OTHER ERROR CODE Internal error detected

grpc error t grpc wait all(void)
This blocks until all previously issued non-blocking requests have completed.

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC NOT INITIALIZED GRPC client not initialized yet
GRPC SESSION FAILED One or more sessions failed
GRPC OTHER ERROR CODE Internal error detected

grpc error t grpc wait any(grpc sessionid t *idPtr)
This blocks until any previously issued non-blocking request has completed. On a successful return, idPtr points
to a completed request.

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC NOT INITIALIZED GRPC client not initialized yet
GRPC SESSION FAILED The session ID pointed to by idPtr failed
GRPC OTHER ERROR CODE Internal error detected

Note: For grpc wait or() and grpc wait any(), if more than one call has completed, it is undefined which
completed session ID is pointed to by idPtr. That is to say, if more than one call has completed, it is not
guaranteed that the session ID returned is for the call that actually completed first, or that successive wait calls
will return completed session IDs in any particular order.

lee@aero.org [Page 9]

GWD-R (Recommendation) September 23, 2004

Error Code Identifier Meaning
GRPC NO ERROR Success
GRPC NOT INITIALIZED GRPC client not initialized yet
GRPC CONFIGFILE NOT FOUND Specified configuration file not found
GRPC CONFIGFILE ERROR An error occured parsing or processing the configuration file
GRPC SERVER NOT FOUND GRPC client cannot find any server
GRPC FUNCTION NOT FOUND GRPC client cannot find the function on the default server
GRPC INVALID FUNCTION HANDLE Function handle is not valid
GRPC INVALID SESSION ID Session ID is not valid
GRPC RPC REFUSED RPC invocation refused by the server, possibly because of a

security issue
GRPC COMMUNICATION FAILED Communication with the server failed somehow
GRPC SESSION FAILED The specified session failed
GRPC NOT COMPLETED Call has not completed
GRPC NONE COMPLETED No calls have not completed
GRPC OTHER ERROR CODE Internal error detected
GRPC UNKNOWN ERROR CODE Error description string requested for an unknown error code
GRPC LAST ERROR CODE Highest numerical error code; used to bound error codes and

does not denote an actual error

Table 1. Summary of GridRPC Error Codes

4.7 Error Codes and Error Reporting Functions

When a GridRPC call fails, an error code is returned. Table 1 gives the error code identifiers that can be used
with variables of type grpc error t. These error codes satisfy:

0 = GRPC NO ERROR < GRPC ... < GRPC LAST ERROR CODE
This specifies a useful numerical ordering of the error codes based on the set of integers without specifying a
specific implementation.

The ability to check the error code of previously submitted requests is provided. The following error report-
ing functions provide error codes and human-readable error descriptions. These error descriptions can be more
informative about the actual cause of the error.

char *grpc error string(grpc error t error code)
This returns the error description string, given a GridRPC error code. If the error code is unrecognized for any
reason, the string GRPC UNKNOWN ERROR CODE is returned.

grpc error t grpc get error(grpc sessionid t sessionID)
This returns the error code associated with a given non-blocking request.

grpc error t grpc get failed sessionid(grpc sessionid t *idPtr)
This returns the session ID associated with the most recent GRPC SESSION FAILED error. This provides
additional error information on a specific session ID that failed for calls that deal with sets of session IDs, either
implicitly, such as grpc wait all(), or explicitly, such as grpc wait and().

Rationale:
The GridRPC error codes are intended to be similar to error classes in the MPI standard. That is to say,

these are types of errors that are inherent to the GridRPC API and may occur in any GridRPC implementa-
tion. Implementation-specific error information may be contained in the associated error description strings. The
GRPC OTHER ERROR CODE error code may be used for implementation-specific errors.
End of Rationale.

lee@aero.org [Page 10]

GWD-R (Recommendation) September 23, 2004

5. Related Work

The concept of Remote Procedure Call (RPC) has been widely used in distributed computing and distributed
systems for many years [4]. It provides an elegant and simple abstraction that allows distributed components to
communicate with well-defined semantics. RPC implementations face a number of difficult issues, including the
definition of appropriate Application Programming Interfaces (APIs), wire protocols, and Interface Description
Languages (IDLs). Corresponding implementation choices lead to trade-offs between flexibility, portability, and
performance.

A number of previous works has focused on the development of high performance RPC mechanisms either for
single processors or for tightly-coupled homogeneous parallel computers such as shared-memory multiproces-
sors [7, 3, 13, 2]. A contribution of those works is to achieve high performance by providing RPC mechanisms
that map directly to low-level O/S and hardware functionalities (e.g. to move away from implementations that
were built on top of existing message passing mechanisms as in [5]). By contrast, GridRPC targets heterogeneous
and loosely-coupled systems over wide-are networks, raising a different set of concerns and goals.

This current work grew out of the Advanced Programming Models Research Group [10]. This group surveyed
and evaluated many programming models [11, 12], including GridRPC. Some representative GridRPC systems
are NetSolve [6], and Ninf [14]. Historically, both projects started about the same time, and in fact both systems
facilitate similar sets of features. A number of related experimental systems exist, such as RCS [1] and Punch [15].
Those systems seek to provide ways for Grid users to easily send requests to remote application servers from their
desktop. GridRPC seeks to unify those efforts.

This work is also related to the XML-RPC [20] and SOAP [19] efforts. Those systems use HTTP to pass XML
fragments that describe input parameters and retrieve output results during RPC calls. In scientific computing,
parameters to RPC calls are often large arrays of numerical data (e.g. double precision matrices). The work
in [9] made it clear that using XML encoding has several caveats for those types of data (e.g. lack of floating-
point precision, cost of encoding/decoding). Nonetheless, recent work [18] has shown that GridRPC could be
effectively built upon future Grid software based on Web Services such as OGSA [8].

6. Security

Security issues are not discussed in this document.

7. Author Contact Information

Hidemoto Nakada
Natl. Inst. of Advanced Industrial Science and Technology
hide-nakada@aist.go.jp

Satoshi Matsuoka
Tokyo Institute of Technology
National Institute of Informatics
matsu@is.titech.ac.jp

Keith Seymour
Univ. of Tennessee, Knoxville
seymour@cs.utk.edu

Jack Dongarra
Univ. of Tennessee, Knoxville
dongarra@cs.utk.edu

lee@aero.org [Page 11]

GWD-R (Recommendation) September 23, 2004

Craig A. Lee
The Aerospace Corporation, M1-102
2350 E. El Segundo Blvd.
El Segundo, CA 90245
lee@aero.org

Henri Casanova
University of California, San Diego
San Diego Supercomputing Center
casanova@cs.ucsd.edu

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might
be claimed to pertain to the implementation or use of the technology described in this document or the extent to
which any license under such rights might or might not be available; neither does it represent that it has made any
effort to identify any such rights. Copies of claims of rights made available for publication and any assurances
of licenses to be made available, or the result of an attempt made to obtain a general license or permission for
the use of such proprietary rights by implementers or users of this specification can be obtained from the GGF
Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this recommendation.
Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2003). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment

on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not be modified in any way,
such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF
Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or
assigns.

This document and the information contained herein is provided on an “AS IS” basis and THE GLOBAL GRID
FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.”

lee@aero.org [Page 12]

GWD-R (Recommendation) September 23, 2004

References

[1] P. Arbenz, W. Gander, and M. Oettli. The Remote Computation System. Parallel Computing, 23:1421–1428, 1997.
[2] I. Aumage, L. Boug, A. Denis, J.-F. Mhaut, G. Mercier, R. Namyst, and L. Prylli. Madeleine II: A Portable and Efficient

Communication Library for High-Performance Cluster Computing. In Proceedings of the IEEE Intl Conference on
Cluster Computing (Cluster 2000), pages 78–87, 2000.

[3] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. Lightweight Remote Procedure Call. ACM Transactions on
Computer Systems (TOCS), 8(1):37–55, 1990.

[4] A. Birrel and G. Nelson. Implementing Remote Procedure Calls. ACM Transactions on Computer Systems (TOCS),
2(1):39–59, 1984.

[5] L. Boug, J.-F. Mhaut, and R. Namyst. Efficient Communications in Multithreaded Runtime Systems. In Proceedings
of the 3rd Workshop on Runtime Systems for Parallel Programming (RTSPP’99), volume 1568 of Lecture Notes in
Computer Science, Springer Verlag, pages 468–484, 1999.

[6] H. Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational Science Problems. In Proceed-
ings of Super Computing ’96, 1996.

[7] C.-C. Chang, G. Czajkowski, and T. von Eicken. MRPC: A High Performance RPC System for MPMD Parallel Com-
puting. Software - Practice and Experience, 29(1):43–66, 1999.

[8] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration. http://www.globus.org/ogsa, January 2002.

[9] M. Govindaraju, A. Slominski, V. Choppella, R. Bramley, and D. Gannon. Requirements for and Evaluation of RMI
Protocols for Scientific Computing. In Proceedings of SC’2000, Dallas, TX, 2000.

[10] Grid Forum Advanced Programming Models Working Group. Web site. http://www.eece.unm.edu/˜apm, 2000.
[11] C. Lee, S. Matsuoka, D. Talia, A. Sussman, M. Mueller, G. Allen, and J. Saltz. A Grid Programming Primer.

http://www.eece.unm.edu/˜apm/docs/APM Primer 0801.pdf, August 2001.
[12] C. Lee and D. Talia. Grid programming models: Current tools, issues and directions. In Berman, Fox, and Hey, editors,

Grid Computing: Making the Global Infrastructure a Reality, pages 555–578. Wiley, 2003.
[13] J. Liedtke. Improving IPC by Kernel Design. In Proceedings of the 14th ACM Symposium on Operating Systems

Principles (SOSP), Asheville, NC, Dec. 1993.
[14] H. Nakada, M. Sato, and S. Sekiguchi. Design and Implementations of Ninf: towards a Global Computing Infrastructure.

Future Generation Computing Systems, Metacomputing Issue, 15(5-6):649–658, 1999.
[15] The Punch project at Purdue. http://punch.ecn.purdue.edu.
[16] K. Seymour et al. An Overview of GridRPC: A Remote Procedure Call API for Grid Computing. In 3rd International

Workshop on Grid Computing, volume 2536, pages 274–278. Springer-Verlag, Lecture Notes in Computer Science,
November 2002.

[17] K. Seymour et al. GridRPC: A Remote Procedure Call API for Grid Computing.
http://www.eece.unm.edu/˜apm/docs/APM GridRPC 0702.pdf, July 2002.

[18] S. Shirasuna, H. Nakada, S. Matsuoka, and S. Sekiguchi. Evaluating Web Services Based Implementations of GridRPC.
In Proc. of HPDC11, pages 237–245, 2002.

[19] Simple Object Access Protocol (SOAP) 1.1. http://www.w3.org/TR/SOAP, May 2000. W3C Note.
[20] XML-RPC. http://www.xml-rpc.com.

lee@aero.org [Page 13]

GWD-R (Recommendation) September 23, 2004

Contents

1. Introduction 2

2. The Basic GridRPC Model 2

3. Document Scope 2
3.1 In Scope . 2
3.2 Out of Scope . 3

4. The GridRPC API 3
4.1 GridRPC Data Types . 3
4.2 Initializing and Finalizing Functions . 4
4.3 Remote Function Handle Management Functions . 4
4.4 GridRPC Call Functions . 5
4.5 Asynchronous GridRPC Control Functions . 7
4.6 Synchronous GridRPC Wait Functions . 8
4.7 Error Codes and Error Reporting Functions . 10

5. Related Work 11

6. Security 11

7. Author Contact Information 11

Intellectual Property Statement 12

Full Copyright Notice 12

References 13

lee@aero.org [Page 14]

