Comments on OGSA-DMI Functional Specification 1.0
(6 February 2008)

R. Schuler, USC Information Sciences Institute

25 March 2008

I’'m just going to list my comments following the order of the document rather than attempt to
categorize them according to high-level issues versus low-level details.

From section 3: “the ability to transfer data from one location to another”

| had a bit of a misconception about the goal of the OGSA-DMI specification before | reviewed it. |
previously thought it would be similar to the Globus Reliable File Transfer service or the Storage
Resource Management srmCopy interface. These tools manage several transfers per request, whereas
as | now understand it the OGSA-DMI interface is intended to support essentially a single “one location
to another” data transfer. So it seems more akin to a Web service layer atop a data transfer utility. For
instance, it appears to be a candidate to sit in front of the GridFTP servers as a WS interface for the
control channel. Also, it could be a candidate to replace srmCopy though without support for multiple
transfers. But as | understand it, it would not be a candidate for a service that schedules multiple data
transfers per request.

From section 3.2.1: “this version of the specification does not make use at all

of the WS-Addressing Endpoint Reference data structure”

| don’t necessarily have an issue with that decision. | just would like to have a better understanding of
why it isn’t used. For instance, what made WSA EPR unsuitable for this specification? Also, given that the
name used is “Data Endpoint Reference (DEPR)” and in fact the data structure looks superficially similar
to the WS-Addressing EPR (figure under 4.2.1.2.1), this seems sure to cause confusion.

From section 4.2.1.2.1: DataLocations/Credentials element

| think this is a good choice to include a Credentials element nested in the DataLocations
element of the DataEPR. Ideally though, | would have a default Credentials element elsewhere that
could apply to both the source and sink DEPRs, perhaps in the [transfer requirements]
parameter of the create DTI call. | think it’s likely that the user’s credential often will be the same for
source and sink. By only having this element nested within the source and sink DEPRs results in
significant overhead.

From section 4.2.1.3.1: EndNoLaterThan element

The EndNoLaterThan setting could be problematic. Does a user really want to abort a transfer that is
99% complete? Is this feature mapped to a real user requirement? But if it is needed, why not just use
the WS-Resourcelifetime TerminationTime interface?

From section 5.2: Support for Stop or Suspend

Not all transfer protocols will be able to support the stop or suspend operations. In such cases, | suppose
the DTl state becomes failed:unclean or perhaps the service returns an exception . | am not clear
on that.

General comment: Extensions

It seems like there will be a lot of usage of the any elements to extend the interface. For instance, | can
see [transfer requirements] being used for GridFTP specific settings like streams and buffer
size in order to tune GridFTP transfers. While the interface specification appears well defined and it is
good to limit its scope, in practice the extended, implementation-dependent elements could be
significant and undermine the objective of interoperability. That’s more of a concern than an objection.

General comment: Support for notifications

| don’t see support for notifications or is WS-Notification an interface that implementations of the
specification can optionally support. As much as possible, it would be good for the specification to
reduce the need for client roundtrips, e.g. getting a state notification instead of polling the DTI resource
to check whether the transfer is done. In fact, adding a “callback” EPR in the create DTI call could be a
good way to eliminate the need for the client to make a second remote call (following the first remote
call to create the resource) to set up notifications, if notifications are to be supported.

