
RESOURCES AND SERVICES VIRTUALIZATION

WITHOUT BARRIERS

Deliverable White paper
RESERVOIR VMI White Paper

Release 1.0

The research leading to these results is partially supported by the European Community’s Seventh Framework
Programme ([FP7/2001-2013]) under grant agreement n◦ 215605.



RESERVOIR Consortium http://www.reservoir-fp7.eu/

Project Number : 215605

Project Title : RESERVOIR : Resources and Services Virtualization with-
out Barriers

Deliverable Type : White Paper

Deliverable Number : White paper

Title of Deliverable : RESERVOIR VMI White Paper

Nature of Deliverable : White Paper

Dissemination Level : Public

Internal Document Number : N/A

Contractual Delivery Date : May 12, 2009

Actual Delivery Date : May 12, 2009

Contributing WPs : WP3

Editor(s) : Lars Larsson

White paper – May 12, 2009 2 of 19

http://www.reservoir-fp7.eu/


RESERVOIR Consortium http://www.reservoir-fp7.eu/

Abstract

This document is shared with the Open Cloud Computing Interface (OCCI) working group at the Open Grid
Forum (OGF) as a white paper on the Virtual Execution Environment Manager Interfaces (VMI) as part of
the ongoing collaboration between the OCCI and the RESERVOIR project.

Keyword List

virtualization, management interfaces, cloud computing

White paper – May 12, 2009 3 of 19

http://www.reservoir-fp7.eu/


RESERVOIR Consortium http://www.reservoir-fp7.eu/

Contributors

Name Organization Sections
Elmroth, Erik Umeå University 2
Henriksson, Daniel Umeå University 2
Larsson, Lars Umeå University 1, 2
Llorente, Ignacio M. Universidad Com-

plutense de Madrid
2

Montero, Ruben S. Universidad Com-
plutense de Madrid

2

Rochwerger, Benny IBM 2
Rodero, Luis Telefónica Investigación

y Desarrollo
2

Sampaio, Americo SAP 2
Tordsson, Johan Umeå University 2
Vaquero, Luis M. Telefónica Investigación

y Desarrollo
2

White paper – May 12, 2009 4 of 19

http://www.reservoir-fp7.eu/


RESERVOIR Consortium http://www.reservoir-fp7.eu/

Document History

Version Date Comment
1.0 12/5/2009 Made changes in accordance with comments and published on

OCCI wiki page.
0.9 28/4/2009 Added Introduction chapter and modified the technical description

contents from SVN slightly.

White paper – May 12, 2009 5 of 19

http://www.reservoir-fp7.eu/


RESERVOIR Consortium http://www.reservoir-fp7.eu/

1 Introduction
A RESERVOIR cloud is an elastic infrastructure for Internet-scale datacenters, and offers Infrastructure

as a Service (IaaS) to service providers. The long-term goal of the project is to enable federations of such
clouds to be formed, and thus offering a market place for Infrastructure as a Service (IaaS) among cloud
infrastructure providers. The VEE Manager Interface (VMI) is the interface used for the communication
between the Service Manager (SM) and the Virtual Execution Environment Manager (VEEM), as well as
between VEEMs at different sites within the RESERVOIR architecture. Such cross-site communication and
collaboration is used for creating a federation of cloud sites.

The RESERVOIR architecture, as defined in the RESERVOIR High Level Architectural Specification
(Internal document D1.1.1) and described in [2], states that management of services and the Virtual Execution
Environments (VEEs) that implement them is divided among two components: the Service Manager (SM)
and the VEE Manager (VEEM). A service is comprised of any number of service components, and each
service component is implemented by VEEs. The SM is contacted by Service Providers (SPs) and offers the
external interface for management of services, as well as functionality such as accounting and management
of service elasticity (dynamic rescaling of service capacity allocation according to demand). The SM is,
however, unaware of the actual implementation details, such as the exact location of the VEEs that comprise
the service. Such lower-level details, e.g. placement, are the responsibility of the VEEM. Figure 1.1 shows
the major components and the interfaces between them in the RESERVOIR architecture.

Figure 1.1: The major components of the RESERVOIR architecture and the interfaces that connect
them [2].

The VMI is comprised of a number of interfaces: (a) submission; (b) control; (c) accounting; and (d)
monitoring. The interfaces are developed to support communication in a RESTful [1] fashion. These interfaces
expose the functionality needed to dynamically deploy, control, and provide accounting information on Virtual
Execution Environments (VEEs). These interfaces will also in a future version provide the functionality
needed to perform operations on VEEs across RESERVOIR sites, transparently to the Service Manager
(SM) [3].

As stated previously, one of the long-term goals of RESERVOIR is to provide infrastructure solutions for

White paper – May 12, 2009 6 of 19

http://www.reservoir-fp7.eu/


RESERVOIR Consortium http://www.reservoir-fp7.eu/

federated cloud environments. The VMI will then be used also across sites, where the VEEM at one site acts
as an SM for another site for the management of the VEEs that will be placed at the remote site [3]. However,
for the 2008 end-of-year demo (henceforth, the term first year is used to describe the work carried out within
the project in 2008), only a single site is supported and therefore there is neither inter-site communication nor
inter-site placement of VEEs. The first year prototype handles only a single site with regard to communication
(from SM to VEEM) and intra-site placement and migration.

In summary, the VMI provides a simple and minimalistic interface for management of the VEEs that
comprise a service within a RESERVOIR site. Further development of the interface will add support for
federations of RESERVOIR clouds.

White paper – May 12, 2009 7 of 19

http://www.reservoir-fp7.eu/


RESERVOIR Consortium http://www.reservoir-fp7.eu/

2 Technical Description
This chapter describes the collection of interfaces for the Service Manager (SM) to interact with the Virtual

Execution Environment Manager (VEEM). These interfaces expose the functionality needed to dynamically
deploy, control, and provide accounting information on Virtual Execution Environments (VEEs). In a future
iteration, these interfaces will also provide the functionality needed to perform operations on VEEs across
RESERVOIR sites, transparently to the SM.

As stated in the RESERVOIR High Level Architectural Specification (Internal document D1.1.1), the
VEEM is responsible for efficient and reliable management of VEEs (Section 6.1.2.2). Thus, the separation
of concerns is clear: the SM manages the service as a whole with regard to elasticity of capacity allocation,
accounting, etc, whereas the VEEM manages the service components on the VEE level including such issues
as where VEEs are deployed in accordance with the site policy for VEE placement. This offers a layer of
abstraction to the SM as it does not need to be concerned with low-level issues such as VEE placement.
Issues of this nature are the sole responsibility of the VEEM.

2.1 Relationship with other Components

The SM and the VEEM cooperate, but have different concerns. In the context of VMI, we note the following:

• Only the SM has the concept of services. This includes services, service components, and service
component groups as defined in Section 2.1 in the RESERVOIR High Level Architectural Specification
(Internal document D1.1.1). The VEEM is only aware of the VEEs, it is responsible for (local and
remote placement), as well as their state and placement.

• The mapping of service components (and groups thereof) to VEEs is the sole responsibility of the SM.

• The SM is responsible for translating the Service Manifest, which contains the description and defintion
of the service and its components, into VMI primitives to be communicated to the VEEM.

• For this first year prototype, there will be no concept, on the VEEM level, of a VEE group. The SM
maintains mappings of service components to VEEs, and is responsible for issuing the VMI method
call to affect the appropriate set of VEEs. Collections of VEEs do not imply “grouping” in any sense
more permanent than for the context and duration of the method call.

• VEEMs may communicate to support federation and migration of VEEs. They do so using the VMI,
where the primary VEEM issues VMI method calls in a SM-like fashion.

2.2 Use Cases and Scenarios

The following basic use cases have been devised to aid the development and guide the thoughts as the
interface is evaluated before implementation. These use cases are aligned with the use cases that have been
defined for the RESERVOIR project (Internal document D1.1.1). Due to the year 1 restrictions of supporting
only a single RESERVOIR site, the use cases are all assumed to execute on a single site. It can also be
assumed that the SM has parsed the Service Manifest correctly, created a refined data model that can be
mapped to a Service Deployment Descriptor (SDD) and will issue the appropriate VMI commands to the
VEEM. For each use case or scenario, it should be discussed what the correct VMI commands are, and in
what order they should be issued.

White paper – May 12, 2009 8 of 19

http://www.reservoir-fp7.eu/


RESERVOIR Consortium http://www.reservoir-fp7.eu/

2.2.1 Simple Service Deployment

Once the SM has created an absolutely refined data model, it states that a single service component should be
started (very “small” service, runs in a single VEE).

2.2.2 Service Redeployment

The service described in the previous section is running at the site. The service has gained in popularity and
the authors have prepared two new images that they want to replace the first one with (now, the database is to
run in a separate service component). This should be performed with as little downtime as possible, and once
the service goes offline, it MUST be replaced within few seconds (according to the business agreement). The
components should run in a virtual local area network, making the database server accessible only from the
other service component, not the Internet.

2.2.3 Service Component Replication

The service from the previous section has grown even more popular, and the database service component
must be replicated (load balancing). The software running in the actual VEE is assumed to handle transferring
the data to the replica once it is online. The replica must run the same master image as the original but may
not run on the same physical host.

2.2.4 Service Shutdown

The service from the previous section has been compromised, and the customer has required it to be shutdown
immediately. The (virtual) hard drive contents must be saved so it can be sent to the owners for analysis and
damage estimation.

2.2.5 Service Restart

The contents of the hard drive from the previous section have been analyzed, the security holes have been
patched, and a new version shall be uploaded and then be put into use immediately.

2.2.6 Update VEEs

The allotted RAM for the database service component VEEs from the previous use case is too low. The
maximum size must be set to 8GB for both the original and the replica (preferably) without restarting the
component and disrupting the service.

2.2.7 Stopping a Replicated VEE

Due to a drop in demand, the database service component no longer needs an active replica. The customers
require that it be shut down to minimize costs, but in such a way that it can easily be restarted should the
need arise.

2.2.8 Restarting a Stopped VEE

The need for restarting the service component from the previous section arose. Assume that once it goes
online again, it will automatically synchronize with the original server. Again, it must run on a different
physical host than the original.

White paper – May 12, 2009 9 of 19

http://www.reservoir-fp7.eu/


RESERVOIR Consortium http://www.reservoir-fp7.eu/

VMI VEE State VEEM VEE State
INITIAL PENDING,HOLD

DEFINED STOPPED
ACTIVE ACTIVE
PAUSED HOLD

SUSPENDED SUSPENDED
DESTROYED DONE,FAILED

Table 2.1: The VEE states from the VMI and VEEM point of view.

2.2.9 Removing All Data Related to a Service

The service is no longer required, and the service provider is no longer a customer. All data related to the
service must be removed to reclaim resources (e.g. storage).

2.3 Related Interfaces and Protocols

VEEM operations will typically involve the interaction of entities at the Internet level. In order to perform its
normal operation in this case VEEM assumes a set of protocols, namely:

• File transfer protocols to perform VEE image files operations, mainly remote copy.

• Security protocols to guarantee client authentication and secure communication messages.

• Dynamic Management of the VEE networks that may include network tunnels, dynamic DNS, etc.

The interfaces to provide such functionality are not part of the VMI. Defining and handling virtual area
networks are part of the VMI, but any higher-level management of these networks must be conducted at the
application level.

2.4 VEE States

From the VMI perspective, a VEE can be in one of the states presented in Table 2.1. The states are mapped
to the ones in DMTF DSP2013 1

It should be noted that the states in Table 2.1 are only from the VMI perspective. The full set of states that
a VEE may be in on the VEEH level is larger. These states are sufficient for expressing the required level of
detail with regard to operations of the SM and VEEM.

The transitions are presented on page 25 of DMTF DSP2013. In VMI terms, these transitions are called
ControlActions. Section 2.5.4 contains the specification of the ControlAction data type.

2.5 Data Types

2.5.1 VEE Accounting Data Type

All VEE Accounting messages are passed using the Accounting interface methods and are represented by
messages conforming to some specification that will be developed by work packages dealing with accounting
and measurements. Accordance with this specification will ensure that the measurement data contains all the

1www.dmtf.org/standards/published_documents/DSP2013_1.0.0.pdf

White paper – May 12, 2009 10 of 19

http://www.reservoir-fp7.eu/
 www.dmtf.org/standards/published_documents/DSP2013_1.0.0.pdf


RESERVOIR Consortium http://www.reservoir-fp7.eu/

relevant information, and will be easy to parse. To ensure location unawareness in the SM, and to separate
concerns, some accounting and monitoring information is passed using the methods of the VMI.

In the first year prototype, the measurements will be aggregated at (customizable) specified intervals and
sent via the VMI to the interested listeners: the primary VEEM in the case of measurements coming from a
remote VEEM and the local SM in the case of the local VEEM reporting to the SM.

2.5.2 VEE Descriptor Data Type

The VEE Descriptor data type (see Table 2.2 for more details) includes all information required by the VEEM,
and remote VEEMs, to allocate resources and perform placement decisions. This information includes the
specification of the virtual hardware (e.g. CPU and memory) as well as information on the networks the VEE
should be part of.

A VEE component may use configuration scripts that require configuration information from the Service
Manager (such as the IP from some other VEE, which it is not known before deployment), this is given
through the ovf-env.xml file. This file is built by the Service Manager as defined in the Service Manifest,
and included in one image prepared by the Service Manager to be mounted on one of the disks of the VEE
replica. The parameters to the call to the VMI will be adapted accordingly so that disk is included along with
the ones specified by the Manifest. The boot process of the VEE replica will mount that disk on a path that is
known by the configuration scripts.

To support “marking” VEEs in a general and semantic-free way, VEE instances may be given a set of tags.
These can be used by the SM to mark the type of the VEE (tagging it and others as “database”) as well as
provide hints for placement. Tags have been added to the VEE Descriptor data type primarily because they
may be used as an extensible way of expressing meta-information on VEEs. Tags also provide designers with
hints on future additions to the VEE Descriptor data type. If a certain tag would be required for all VEEs,
then that kind of information may be turned into an attribute in a future design of the VEE Descriptor data
type.

Description VEE Descrip-
tion Data

OVF Data

Name Name ovf:id
<VirtualSystem>
attribute suffixed by a string that iden-
tifies univocally the replica (e.g. a nu-
merical ID)

Amount of re-
quested

CPU CPU item in

<VirtualHardwareSection>

Number of re-
quested CPUs

CPU

<rasd:VirtualQuantity>

in CPU item in

<VirtualHardwareSection>

White paper – May 12, 2009 11 of 19

http://www.reservoir-fp7.eu/


RESERVOIR Consortium http://www.reservoir-fp7.eu/

Amount of re-
quested memory

memory memory item in

<rasd:AllocationUnits>

plus

<rasd:VirtualQuantity>

combination in memory item in

<VirtualHardwareSection>

Disk source source ovf:href

<File>

attribute
Disk size in GB size ovf:capacity

<Disk>

attribute
Disk target
(device to map
disk and used as
root)

target

<rasd:HostResource>

in the disk

<Item>

in

<VirtualHardwareSection>

Disk clone clone None.
Device name to
map interface

NIC target

<rasd:Connection>

in the NIC

<Item>

in

<VirtualHardwareSection>

Network name Network ovf:name

<Network>

attribute
Hypervisor type RAW Type

<vssd:VirtualSystemType>

White paper – May 12, 2009 12 of 19

http://www.reservoir-fp7.eu/


RESERVOIR Consortium http://www.reservoir-fp7.eu/

Semantic-free
Tag

Tag -

Raw data Raw data Raw Data
Table 2.2: VEE Description Data Type and Correspondence with OVF Data.

2.5.3 Initialization Type Enumeration

Initialization of service component groups may be conducted either according to the best effort or the two-
phase submission procedure. The definitions, as per the architecture document (Internal document D1.1.1),
are (slightly paraphrased and updated to match the DTMF-compatible set of states for VEEs):

• TWOPHASE, initialization is performed in two phases. First, the VEEM initializes internal data
structures. Then, in the second phase, the VEEM looks for a feasible deployment for the new service.
Both phases must be successfully completed for all service components, otherwise an error is returned.

• BESTEFFORT, only the service’s internal data structures are initialized and the corresponding result is
returned. All the associated VEEs will remain in the INITIAL state until there are enough resources to
deploy the VEEs.

The difference between two-phase and best effort initialization is that the calling component may not
expect the VEEs to be placed and run neither immediately nor at all. Such VEEs may be run if the VEEM
can create a beneficial placement strategy for the VEEs.

The VEEM placement engine runs continuously in the background, and may optimize placement during
such background runs. If the placement engine detects that it could run a VEE submitted via best effort
submission, it will attempt to do so.

When the best effort initialization returns successfully, the caller is guaranteed that the VEEs that were
passed as parameters are in the INITIAL state. The monitoring framework should deliver information on
when the VEE has been placed so the SM can activate it.

For the first year prototype, only the best effort initialization model will be implemented. This will be
sufficient, because we are making the assumption that there will always be enough capacity at the VEEM.

2.5.4 ControlAction Enumeration

The VEEControlAction enumeration specifies the type of operation to be performed on a given VEE, and it
is used as an input parameter to the control methods provided by the VMI interface:

• ACTIVATE, which puts a VEE into the ACTIVE state;

• PAUSE, which puts a VEE in the ACTIVE state into the PAUSED state;

• SUSPEND, which puts a VEE in either the ACTIVE or PAUSED state into the SUSPENDED state;

• SHUTDOWN, which puts a VEE in either the ACTIVE, PAUSED, or SUSPENDED state into the
DEFINED state; and

• DESTROY, which puts a VEE in any state into the DESTROYED state.

See Section 2.4 for further information on the states of VEEs and the transitions between these states.

White paper – May 12, 2009 13 of 19

http://www.reservoir-fp7.eu/


RESERVOIR Consortium http://www.reservoir-fp7.eu/

2.5.5 Monitoring Event Type Enumeration

The monitoring Events that can flow up to the SM from the VEEM are listed below:

• Hardware VEE Data

• Probe Data

• Agent Data

2.6 Semantic-Free Collections of VEEs

In order to separate concerns between the SM and the VEEM and keep the VEEM unaware of the concept
of services as well as service component groups, the VMI methods shall for the Y1 prototype accept a
semantic-free collection of VEE identifiers as a parameter. This design must be evaluated for the future
prototypes.

Collections of VEEs are free from semantics, meaning that membership of a collection for a method call
does not indicate any type of relationship between the referenced VEEs. They may even belong to different
unrelated services.

The only semantics provided by this type of method call is with regard to order. Order is determined by
the type of the collection: a list (ordered) or a set (unordered). The list type implies that the VEEs must be
handled in sequential order (e.g. for issuing a command to start up the virtual machines in a certain order as
specified in the Service Manifest), whereas VEEs in a set may be dealt with in arbitrary order.

The collection-based methods do not guarantee atomicity: the system permits that one or more of the
referenced VEEs cannot be manipulated in the way that the method specifies. Atomicity, should it be required
in some service, must be handled by the service provider and is outside the scope of RESERVOIR.

2.7 Interfaces

According to all the previous sections, the proposed interfaces for this first year are as follows. For all the
interfaces, it is assumed that the involved parties (SM and VEEM or a pair of VEEMs) have authenticated
each other in some secure fashion, and their identity is known and can be implied (no need to send identifiers
for each call).

2.7.1 VEE Submission Interface

2.7.1.1 InitializeVEEs

The InitializeVEEs method is used to define VEEs and in particular make them known to the VEEM so that
they can be referred to by a VEE identifier in future calls.

Parameters:

• VEE description as specified by a VEE Descriptor data type (c.f. Section 2.5.2)

• Initialization model, either TWOPHASE or BESTEFFORT, as described in Section 2.5.3. Note that
for the first year, this value may only be BESTEFFORT.

Return values:

• Set of VEE identifiers. The items in the set are guaranteed to be unique identifiers that have never been
used before.

White paper – May 12, 2009 14 of 19

http://www.reservoir-fp7.eu/


RESERVOIR Consortium http://www.reservoir-fp7.eu/

• A set of VEE initialization values. This value is a VEE Descriptor data type that contains any values
that may have been generated in the process by the VEEM. For instance, the public IP address of the
VEE (should one be required).

• Success or failure. Success indicates that the VEE identifiers have been defined to be instances of
the VEE as described by the VEE Descriptor data type. Success guarantees that the VEEs are in the
DEFINED state (as in Section 2.4), and can be referenced using the VEE identifiers returned. Failure
indicates that the VEEs could not be defined as specified in the VEE description. When a two-phase
initialization is specified a failure could mean that the VEEM does not have enough resources to
satisfied the initialization request.

Errors:

• An error is raised if the VEE description is malformed.

• Not enough resources for the initialization request (only for the TWOPHASE initialization model)

• Access denied, not enough privileges to perform the action

2.7.1.2 SubmitVEEs

This method is used to submit a collection of VEEs. The VEEM will deploy and activate the VEEs.
Parameters:

• Set of VEE identifiers. The items in the set must be VEE identifiers that have been returned by a
previous call to the InitializeVEEs method.

Return values:

• Success or failure. Success indicates that the VEE is being deployed on a VEEH (if a TWOPAHSE
initialization was used) or will be deployed in the future (if a BESTEFFORT initialization was used).

Errors:

• Wrong state, if the VEE is not in the DEFINED state.

• Access denied, not enough privileges to perform the action (e.g. trying to submit a VEE initialized by
other user).

2.7.2 VEE Control Interface

2.7.2.1 UpdateState

This method updates the state of a collection of VEEs.
Parameters:

• Collection of VEE IDs. The IDs of the VEEs that should be affected by the update. If the collection is
a list, the VEEM guarantees that the update to state is applied in the list order. If the collection is a set,
the VEEM may issue the state updates in arbitrary order.

• VEE Control Action. As specified in Section 2.5.4

Return values:

White paper – May 12, 2009 15 of 19

http://www.reservoir-fp7.eu/


RESERVOIR Consortium http://www.reservoir-fp7.eu/

• Set of VEE IDs, where membership indicates successful application of the state update (state updates
may fail due to some transitions being undefined, e.g. it is impossible to go from the DEFINED state
to the SUSPENDED state without having entered the ACTIVE state first).

Errors:

• None.

2.7.3 VEE Accounting Interface

Using the producer/consumer pattern, the VEE Accounting interface is used by a VEEM to send information
back to the primary VEEM or SM about the state of VEEs. Whether Monitoring information should also be
sent this way is still (at time of writing) a topic of discussion in the mailing lists. Should this information
pass through the VEEM, we can consider both to be conceptually equal — the only difference being in the
exact information that is transmitted (CPU/Memory usage vs number of used CPU/memory units).

2.7.3.1 ReceiveAccountingInformation

This method is required by an interface that all listeners for accounting information have to implement.
Parameters:

• Accounting information

Return values:

• None.

Errors:

• None.

2.7.3.2 RegisterAccountingInformationListener

The method is used to register as a listener for accounting information. A component may only receive
information about a VEE at one specified interval: repeated calls to this method for a given VEE will change
the interval rather than add a new one (i.e. if the interval for VEE A was 300000ms, a new call to the method
with a parameter of 600000ms will update the interval to 600000ms).

Parameters:

• A set of VEE identifiers. The caller will be sent accounting information concerning the identified
VEEs.

• An interval specification in milliseconds. The caller will be notified by the receiver at the specified
intervals. This monitoring information is sent at exactly these intervals (may not be received at these
intervals due to network latency, the system is still asynchronous), even if there is no accounting
information available.

Return values:

• None.

Errors:

• The caller is not authorized to receive accounting information for the specified VEEs.

• The VEEs are not known to the system.

White paper – May 12, 2009 16 of 19

http://www.reservoir-fp7.eu/


RESERVOIR Consortium http://www.reservoir-fp7.eu/

2.7.3.3 DeregisterAccountingInformationListener

The method is used to de-register as a listener for accounting information.
Parameters:

• Collection of VEEs identifiers. The caller will no longer receive information concerning the identified
VEEs. If the caller is not a listener to the specified VEE, this call has no effect.

Return values:

• None.

Errors:

• Raise an error if at least one of the VEE identifiers is invalid.

2.7.4 VEE Monitoring Interface

Using the push pattern, the VEE Monitoring interface is used by a VEEM to send information back to the
primary VEEM or SM about the state of VEEs as it is produced. The SM monitoring components will be
in charge of aggregation or processing the information as needed upon arrival. The information is based
on events generated by the VEEs and the VEEHs in which these VEEs run, and is used by the SM to (e.g.)
determine SLA violations. Also, information flowing up to the SM from the probes and the Software Agents
within the Service Provider images are said to flow through the VMI.

2.7.4.1 MonitoringInformation

Monitoring information is passed through the VMI from one VEEM to another until it can reach the SM.
Monitoring information contained as a message conforming to some specified schema. There are three data
items all events have (header):

• Event Type. Type of event. See Section 2.5.5 for further details.

• t0. Instant the event happened at (milliseconds UTC format).

• ∆t. For monitoring events which carry aggregated data from measurements taken during a certain time
interval, this item represents the length of the interval (milliseconds) 2.

Also, depending on the event type, the events will have the following data associated (body of the message):

• VEE HW Measurements.

FQN of the measurement. For example:

tid.customers.EasyJet.services.Web.serviceComponents.DBServer.replicas.1.mem.fre e

Measurement value.

• Agent Monitoring.

FQN of the KPI. For example:
tid.customers.Sub.services.SGE.serviceComponents.master.kpis.queueSize

Measurement value.
2Please note that a mechanism to synchronize all the events across RESERVOIR must be enabled for the second year when an

actually federated infrastructure will be available.

White paper – May 12, 2009 17 of 19

http://www.reservoir-fp7.eu/


RESERVOIR Consortium http://www.reservoir-fp7.eu/

• Probe Monitoring. Same as agent monitoring.

The body of the message can contain any type of information, time averaged data, single point data or
aggregated registers. The SM components accessing this information are assumed to have enough intelligence
so as to deal with the information contained in the body.

2.7.4.2 PutMonitoringInformation

This method is required by an interface that the Receiving VMI handler must implement so as to enable all
the data sources to put the data as they are produced.

Parameters:

• Monitoring information, see Section 2.7.4.1.

Return values:

• None.

Errors:

• None.

White paper – May 12, 2009 18 of 19

http://www.reservoir-fp7.eu/


RESERVOIR Consortium http://www.reservoir-fp7.eu/

Bibliography
[1] R. Fielding. Architectural styles and the design of network-based software architectures. PhD thesis,

University of California, 2000.

[2] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. Llorente, R. Montero, Y. Wolfsthal,
E. Elmroth, J. Caceres, M. Ben-Yehuda, W. Emmerich, and F. Galán. The RESERVOIR Model
and Architecture for Open Federated Cloud Computing. IBM Journal of Research and Development
(accepted), 10 2008. [online] http://www.reservoir-fp7.eu/twiki/pub/Reservoir/
PublicationsPage/RESERVOIR_for_ISJ_-_Final.pdf.

[3] M. B. Yehuda, O. Biran, D. Breitgand, K. Meth, B. Rochwerger, E. Salant, E. Silvera, S. Tal, Y. Wolfsthal,
J. Cáceres, J. Hierro, W. Emmerich, A. Galis, L. Edblom, E. Elmroth, D. Henriksson, F. Hernández,
J. Tordsson, A. Hohl, E. Levy, A. Sampaio, B. Scheuermann, M. Wusthoff, J. Latanicki, G. Lopez,
J. Marin-Frisonroche, A. Dörr, F. Ferstl, S. Beco, F. Pacini, I. Llorente, R. Montero, E. Huedo, P. Massonet,
S. Naqvi, G. Dallons, M. Pezzé, A. Puliato, C. Ragusa, M. Scarpa, and S. Muscella. RESERVOIR -
an ICT infrastructure for reliable and effective delivery of services as utilities. Technical report, IBM
Haifa Research Laboratory, 2 2008. [online] http://domino.watson.ibm.com/library/
CyberDig.nsf/papers/A44F6256BB697FCE852574E10052DDEE.

White paper – May 12, 2009 19 of 19

http://www.reservoir-fp7.eu/
http://www.reservoir-fp7.eu/twiki/pub/Reservoir/PublicationsPage/RESERVOIR_for_ISJ_-_Final.pdf
http://www.reservoir-fp7.eu/twiki/pub/Reservoir/PublicationsPage/RESERVOIR_for_ISJ_-_Final.pdf
http://domino.watson.ibm.com/library/CyberDig.nsf/papers/A44F6256BB697FCE852574E10052DDEE
http://domino.watson.ibm.com/library/CyberDig.nsf/papers/A44F6256BB697FCE852574E10052DDEE

	Introduction 
	Technical Description
	Relationship with other Components
	Use Cases and Scenarios
	Simple Service Deployment
	Service Redeployment
	Service Component Replication
	Service Shutdown
	Service Restart
	Update VEEs
	Stopping a Replicated VEE
	Restarting a Stopped VEE
	Removing All Data Related to a Service

	Related Interfaces and Protocols
	VEE States
	Data Types
	VEE Accounting Data Type
	VEE Descriptor Data Type
	Initialization Type Enumeration
	ControlAction Enumeration
	Monitoring Event Type Enumeration

	Semantic-Free Collections of VEEs
	Interfaces
	VEE Submission Interface
	VEE Control Interface
	VEE Accounting Interface
	VEE Monitoring Interface


	Bibliography

